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Abstract—Given the escalating global threat of phishing
emails, it is imperative to develop effective solutions to mitigate
their potentially devastating impacts on society. This study
endeavours to construct a federated multilingual spam detection
system employing logistic regression, specifically targeting English,
French, and Russian emails. This is the first work to the best
of our knowledge which considers a non-deep learning setting
for federated learning, and combines federated learning with
multilingual phishing detection. Evaluation of the models is based
on accuracy metrics which are compared with a most frequent
class baseline. Our findings indicate that an optimal configuration
comprises 10 clients undergoing 100 epochs of training with 100
rounds of federated learning, resulting in superior performance.
Notably, this approach significantly outperforms the baseline,
achieving an accuracy of 89.46% compared to 70%.

Index Terms—phishing, machine learning, multilingual, feder-
ated learning

I. INTRODUCTION

The widespread occurrence of phishing emails in modern
society presents a notable concern, yielding numerous adverse
outcomes when individuals are deceived by them. These de-
ceptive emails afford hackers entry to accounts, encompassing
email, social media, and online shopping platforms.

Previous research has already determined that phishing is
not limited to English, and is a world-wide problem that spans
many languages [1]. However, this problem has not slowed
down or diminished. In 2023, there was a phishing campaign
conducted in Japanese [2] as well as attacks in Hebrew and
Arabic [3]. This highlights the continued importance of making
sure that phishing email detection systems are capable of
handling numerous languages.

Artificial intelligence (AI) detects abnormalities in phishing
emails compared to normal benign emails, meaning that it can
be utilized to determine if an email is malicious or not. In
addition, AI, in particular machine learning (ML), has been
shown to be effective at multilingual tasks [4] such as phishing
detection [1]. Therefore, AI can be used to detect multilingual
phishing emails.

Federated learning (FL) represents a decentralized approach
to ML, wherein numerous edge nodes operate independently,
undergoing training on local data samples instead of centralized
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ones as seen in conventional ML methods. This methodology
serves to safeguard both data privacy and security [5]. FL
operates by employing a global model alongside multiple edge
devices. Initially, a global ML model undergoes training on
a publicly accessible dataset. Following this, various edge
devices download this same global model, enhancing their
individual local models by leveraging input from each user. At
regular intervals, each edge node transmits training updates
to the global model, which then aggregates these updates,
adjusting itself accordingly. Subsequently, the edge devices
retrieve the updated global model, and the iterative process
continues. Throughout this entire process, the global model
remains oblivious to the specific data uploaded by users, thereby
preserving their privacy.

Since ML can be used to detect emails in multiple languages,
and FL can be used to preserve privacy, they can be combined
to provide lightweight phishing detection to users who speak
languages other than English. Previous research [6], [7], [8] has
only focused on deep learning (DL), as opposed to lightweight
models. Lightweight models, in the context of this research,
refers to models that are not DL models.

To the best of our knowledge, this is the only research
which not only uses a lightweight model in federated phishing
detection, but examines multilingual phishing detection. To
conduct the examinations, data in English, French, and Russian
was obtained [9] and will be elaborated upon in subsequent
sections of the paper. To perform the experiment, an FL system
was built, and the hyperparameters were fine-tuned to achieve
the best result. This work only considers lightweight models
not only because of the research gap, but because deep learning
models are more costly for the environment compared to
lightweight models [10], [11].

This research aims to answer the following questions.

• RQ1: Which model is the best baseline for a multilingual
FL system?

• RQ2: How does the number of rounds and epochs affect
the multilingual FL system?

• RQ3: How does the number of FL clients affect the
multilingual FL system?

• RQ4: Is FL viable for a multilingual phishing detection
system?



To address these research questions, our methodology
involves a structured, four-step process for building and testing
a multilingual federated phishing detection system. First, data
is collected and preprocessed, primarily drawing from email
datasets in English, French, and Russian. Then, we set up the
federated learning (FL) environment using Flower FL [12]. For
this, logistic regression is selected as a lightweight model. It
also uses email features derived from EMFET [13] to facilitate
feature extraction in multiple languages.

Our experiments address the key research questions by
comparing eight models to establish a baseline, and by
analyzing the optimal configuration for FL settings through
varying clients and training rounds and epochs. Results are
reported both centrally and in a distributed setting, ensuring
comprehensive analysis across different configurations. This
methodology not only explores multilingual phishing detection
but also addresses FL challenges in a multi-language scenario
which has not yet been done at the time of writing.

The rest of the paper is structured as follows: Section 2
delves into related and prior works. Section 3 outlines the
methodology employed. Section 4 presents the results obtained.
Section 5 offers concluding remarks on our work. Section 6
examines the limitations of this work and proposes some future
directions.

II. BACKGROUND

Multilingual federated phishing detection is an area yet
to be explored leaving a gap in research. This section will
highlight the existing work in the areas that have been
done. There are 2 main areas which have been researched
already: federated phishing detection and multilingual phishing
detection. Research combining both the areas is needed which
our research will begin to address.

A. Multilingual Phishing Detection

Vu et al. examine phishing emails across Vietnamese,
Chinese, and English languages employing a rule-based strategy
rooted in SpamAssassin, an Apache website, to classify and
filter spam [14]. Good results were achieved with the utilization
of 100 rules at a threshold of 0.5, resulting in a spam detection
rate of 49.6% and a false alarm rate of 2.9% [15].

Researchers from Lithuania similarly explored the area of
multilingual phishing email detection encompassing English,
Russian, and Lithuanian languages. Their experiment tested
naive Bayes, random forest (RF), and support vector machine
(SVM). SVM emerged as the most effective, achieving an
accuracy of 84%. However, the study suggests the potential of
Deep Learning (DL) to yield even better results in subsequent
research [16].

Although two papers are overviewed, additional work in
the field of multilingual phishing detection has been done[17],
[18], [19], [20].

B. Federated Learning

Thapa et al.’s research [7] investigates FL and phishing
detection. They use three datasets (Enron spam [21], Nazario

[22], and IWSPA-AP phishing emails) and compare two models
(THEMIS and BERT). The findings suggest that while FL is
feasible compared to centralized learning, it fails to match the
performance of the latter. Additionally, the research highlights
that an increase in the number of clients leads to a degradation
in performance and a decrease in convergence speed for
THEMIS, and vice versa for BERT.

Sun et al. propose a model named Federated Phish Bowl
(FPB), integrating FL and long short-term memory (LSTM)
[6]. For the dataset, emails from Microsoft 365 and the Enron
dataset [21] are selected. FPB utilizes a five-layer model
comprising three bidirectional LSTM layers, a fully connected
layer with 200 neurons, and an output layer with one neuron.
Results indicate that FPB surpasses individual client learning,
with performance degradation observed as the number of clients
increases.

In addition to the two studies examined above, there are
also other pieces of work which examine federated learning
and phishing detection [23], [24], [25].

C. Research Gaps

In general, the only two works to consider federated phishing
detection did so with deep learning models, LSTM, THEMIS,
and BERT. Deep learning models require increased resources to
use compared to traditional models such as logistic regression
in terms of computational power. They also have a higher
environmental impact with regard to both carbon emissions
and energy consumption [10], [11]. FL can be used for phishing
detection due to its inherent privacy preserving nature. End
users of a phishing detection system may have confidential
emails that must be kept private, or they may simply want to
increase their own privacy. To the best of our knowledge, there
is no FL phishing detection work which uses these traditional
models making this work even more novel.

III. METHODOLOGY

At a glance, our overall methodology is that we obtain our
data, implement the server and client, and then conduct an
experiment to choose the base model. Finally, we conduct
experiments to test the number of clients and the number of
rounds and epochs for training.

A. Data Used

Data acquisition in the form of multilingual phishing emails
is required to perform the research. This work adopts the same
data setup as previous work by [1].

The majority of the data comes from [9]. The other data
will come from the Enron/Enron Spam and TREC 07 email
datasets [[26],[21],[27]].

Three languages were chosen for the experiment, English,
French, and Russian. For the English dataset, we utilized the
Enron Spam dataset [26], a subset of the Enron dataset [21],
specifically using the preprocessed variant of Enron1 [28]. For
the French dataset, we sourced the spam segment from the
prior research of Pan et al. [9]. However, this collection is
comprised solely of spam emails and necessitated augmentation



with authentic ones. To achieve this, emails from the TREC07
dataset [27] were translated from English into French. This
translation was performed using Google Translate via the API.
Similarly, for the Russian dataset, the process closely mirrored
that of the French dataset. Spam emails were acquired from
Pan et al. [9], while legitimate emails (ham) were sourced from
the preprocessed Enron Spam dataset [26] and subsequently
translated from English into Russian.

The final training data file contained 3983 English emails
(71% ham, 21% spam), 472 French emails (52% ham, 48%
spam), and 175 Russian emails (50% for each) making 4630
emails total for training. The combined training set had a
ham/spam ratio of 69% ham and 31% spam. For testing, 996
English, 472 French, and 175 Russian emails were used with
the same splits as above for 1643 emails total. The combined
test set had a ham/spam ratio of 70% ham and 30% spam.
This means that our solution should surpass 70% accuracy as
one could obtain 70% simply by choosing the most frequent
class every time and thus will be our baseline.

While there is not much data compared to other datasets,
especially in languages other than English, it works well as each
client realistically would not have so much data at one time.
This setting being researched envisions an area in which there
are speakers of many languages, necessitating a multilingual
phishing detection system to combat emails as emails could
appear in different languages.

B. Implementation

For the implementation of FL, Flower FL will be used [12].
This is an FL framework that is model agnostic, meaning any
model can be used. In this work, multiple clients will be ran on
one machine. Future work could examine Flower’s simulation
module which can enable more clients.

FedAvg [29] is selected for our averaging strategy as this is
a baseline for testing FL. Future work could try other popular
algorithms and compare results, such as FedAvgM, FedProx,
or FedBN.

The choice of model is needed as well. Where this is an
edge environment, the devices may not have the resources to
run a multilingual transformer-based model in practice such
as XLM RoBERTa or GPT3. Hence, this work will examine
how lightweight models work, such as logistic regression. In
particular, an initial experiment will be performed to determine
the base model for the FL system.

To start, the server sets the initial parameters for the base
model (logistic regression), picks the strategy (FedAvg, and
how many clients at minimum must be used for training),
specifies how evaluation will occur, and starts the server along
with setting how many rounds of training will happen which
can be fine tuned. For evaluation, it reads the whole test set in
for centralized evaluation, and after each round, updates the
model accordingly and returns the loss and accuracy for that
round. It also specifies a weighted average which is used to
aggregate client results for distributed results.

First, the client takes in a partition id value to identify the
client and it is used to obtain a partition of the data. The

client then has to read the training and testing data in, and
partition into X number of pieces (the number of clients total).
Next, the model is created; logistic regression is chosen as
experiments show that logistic regression performs the best in
a non federated setting as shown in Figure 1. The L2 penalty is
chosen, with X epochs which can be fine-tuned. The FL client
is then created, defining how parameters are obtained, how
training and model updating works, and how local evaluation
occurs. The client is started and attempts to connect to the
server. The utility file specifies helper functions, how to get
model parameters, and how to set model parameters, and sets
the parameters for the first time.
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Fig. 1. Results showing the accuracy of the different lightweight models in a
non-federated setting.

1) Lightweight-ness of Logistic Regression: Logistic regres-
sion is extremely lightweight compared to deep learning models.
For this experiment, logistic regression has only 91 features, 90
plus a bias term. LLMs on the other hand, are multiple orders
of magnitude larger even at the smaller level. A tiny LLM,
named TinyBERT has “only" 14.5 million parameters [30].
The base BERT model has 110 million [31], and GPT-3 has
175 billion [32]. At the largest end of LLMs, they can reach
parameter sizes of 1.2 trillion which is the size of GLaM [33].
From this, it is clearly observable that the logistic regression
used in this research is extremely lightweight when compared
to deep learning transformer based models.

C. Experimental Setup

The hardware components on which the experiments were
ran are an Intel I7 4770K CPU, and 16 GB of RAM. Since
the Scikit-Learn [34] library was used, no GPU can be used.
However, since the models are lightweight, this is not an issue
and no acceleration is needed.

In total, 3 experiments were ran: the initial experiment to find
the base model, a 10-clients experiment to examine epochs and
rounds, and an experiment with the ideal epochs and rounds
but with varying clients. These experiments will address the
research gap and provide us with the first research in the area
of multilingual federated phishing detection.

The data for the below experiments is mixed English, French,
and Russian phishing emails with features extracted using



EMFET [13]. The tool underwent research testing and exhibited
strong performance with their data [35]. Our feature extraction
process exclusively targets the body of the email, disregarding
the header. A total of 59 features concentrates on various
aspects of the email body itself, such as the overall tab
count and the occurrence of designated spam words. The
spam word list, integral to EMFET, has been translated into
French and Russian to facilitate feature extraction in those
languages. Additionally, 23 features are dedicated to assessing
the readability of the body, encompassing metrics such as the
tally of simple and complex words, along with the Simple
Measure of Gobbledygook (SMOG) index. Furthermore, seven
features are centered on lexical diversity, including the analysis
of hapax legomena. These features are all listed in the original
paper [13]. Although a total of 89 features are utilized, EMFET
offers functionality to inspect both the header and attachments
if necessary.

1) Experiment 1: The initial experiment examined eight
total models: logistic regression, decision tree, random forest,
Bernoulli Naive Bayes, SVM, KNN, adaboost, and an ensemble
model with all of the classifiers. For random forest and SVM,
the random state is set to the same each time. This is important
as different states could give different results each time making
comparisons difficult. Random forest also uses 100 estimators.
KNN uses the floor of the square root of the total amount of
emails. The accuracy is captured for all of the models, and
compared against each other keeping the most frequent class
baseline in mind. This experiment will address RQ1.

2) Experiment 2: This 10 client experiment was run 4 times,
at 1 epoch and round, 10 epochs and rounds, 100 epochs and
rounds, and 1000 epochs and rounds. Each client obtained a
partition of the data and varying epochs and rounds. From this,
the best combination was selected for further testing in the
third experiment to see how clients affect results. The clients
will be increased in intervals of 5, up to 60 where above, the
system would start to give memory errors. Currently, 42 is
used as the random state to shuffle the dataset; however, better
random states may exist and worse random states may exist.
In addition, each experiment is run 5 times and averaged to
ensure the results are more robust. From this experiment, we
can answer RQ3.

3) Experiment 3: For the third experiment, where the rounds
and epochs are tested, the results are given in a distributed
setting and a centralized setting. The centralized setting is
where the FL server performs the testing with a central dataset
and evaluates the global model on this dataset. The distributed
setting is where the clients perform testing on themselves and
send their results to the server for aggregation, in this case, a
weighted average. The dataset is unique to each client. The
centralized dataset is the testing dataset described above. The
distributed dataset each client has is the same dataset but split
into partitions. Finally, experiment 3 will address RQ2. RQ4
will be addressed by analyzing all of the experiments instead
of one specific one.

IV. RESULTS

In our research, we utilize accuracy as the primary evaluation
metric. Nevertheless, we acknowledge the imbalance in class
distribution. Although precision and recall could address this
concern, we choose to interpret our findings relative to the
baseline, represented by the most prevalent class.

A. Which Model Performs The Best in a Non-FL Setting?

Figure 1 shows the results for the non-federated setting. In
this lightweight model setting, logistic regression performs
the best, scoring 88.9%. This value will be used to compare
against the federated setting’s best value to see if there is an
increase or decrease. Even in a non federated setting, this is a
good value, surpassing the baseline value by 18.9%. Previous
research on multilingual phishing detection has shown it is a
difficult problem [1], so this result is a good start. From these
results, logistic regression is chosen as the base model for the
FL system and further testing is conducted on this.

B. How Do Epochs and Rounds Affect Performance?

First, the number of epochs and rounds was tested. In this
setting, it was found that maximum performance comes from
training logistic regression for 100 epochs and running the FL
system for 100 rounds, achieving 89.46% accuracy in both the
distributed setting and the centralized setting. Only the 1 round
and 1 epoch setting had any difference between distributed
and centralized. In general, the more rounds and epochs that
are performed, the better the results. However, with this being
said, 1000 epochs and rounds actually performs worse than
100. It can be assumed the model converges close to or around
100 and overfits when training for more.

C. How Does The Number of Clients Affect Performance?

From experiment 2, 100 rounds and epochs were found to
have the best performance. Using this, and logistic regression,
an experiment focusing on the number of clients was performed.
It was found that 10 client setting performs the best, obtaining
89.44% accuracy on average. As a general trend, the number
of clients is negatively correlated with accuracy. Average
starts around 89% with a low number of clients, and with
a high number of clients drops to around 86-87% accuracy.
It is hypothesized that if the clients continued to grow, the
difference would become more pronounced. At the current
drop in accuracy, it is still viable to use with 60 clients.

D. Explainability of Features

Logistic regression being a lightweight non-transformer
model means that compared to deep learning, it is much simpler
to explain how the model came to a decision and which features
are the most important. A logistic regression model is trained
on the multilingual dataset, and then the coefficients for each
feature are extracted. This process is repeated five times and
averaged. This is performed in a non federated setting. The top
and bottom three results will be shown in each table. Coefficient
analysis is good for an initial evaluation which is what we
provide here.



Table I show the results. From this, we can see to some extent
which features are indicative of spam or ham emails. For spam,
excessive punctuation (question marks) and odd structure (ratio
of uppercase letters to lowercase letters) are a high indicator
of spam. For ham emails, Sichel (a readability score) and good
structure (entropy) are indicators of ham emails.

TABLE I
AVERAGE MULTILINGUAL FEATURE IMPORTANCE (COEFFICIENT)

Feature Average Coefficient

MultipleQuestionMarks 2.08
RatioUpperLower 0.84
InverseFI_WithoutStopwords 0.63
RatioNonAlphaNumToAll -0.63
Entropy -1.12
Sichel -1.66

E. Is FL Viable for a Multilingual Phishing Detection System?

Yes. FL is indeed viable for multilingual phishing detection
according to the experiment shown in Figure 1, and described
in experiments 2 and 3, meaning it is about on par with non FL,
and surpasses the most frequent class baseline. However, there
are more nuances to consider before this could be practically
implemented. For the results in the above figures, the best
accuracy is an average of 89%. This is a good accuracy,
surpassing the most frequent class baseline of 70%. In addition,
89% is a very good accuracy considering the base model.
Logistic regression is a very lightweight model, meaning a
high accuracy when using it is very good. This means that
when implemented, it is a lightweight model that nearly all
edge devices would be able to support. In addition, logistic
regression is much faster than deep learning models as they
are much bigger and much more complex. While FL does
appear to be viable, considering a zero shot learning setting
like the one detailed in [1] would aide in proving its viability.
Furthermore, in a practical system, privacy must be kept, in
addition to considering other factors such as the hardware that
the edge devices will be, and the latency between the devices
and central server. There are also other factors such as when
to update models, how often, and what devices to include.

V. CONCLUSION

This study explores the feasibility of utilizing federated learn-
ing in conjunction with a lightweight model for multilingual
phishing detection. This is the first work to our knowledge
which combines both multilingual phishing detection along
with federated learning. Our findings indicate that FL, when
combined with logistic regression as a base model, shows
promising results in identifying phishing emails in English,
French, and Russian. The achieved accuracy surpasses the
most frequent class baseline, highlighting the potential of this
approach to enhance email security for users across diverse
linguistic backgrounds.

Our experiments highlight key considerations such as the
impact of epochs, rounds, and the number of clients on system

performance. We observed that optimizing these parameters
is crucial for achieving the best results. Additionally, while
FL demonstrates viability for multilingual phishing detec-
tion, practical implementation considerations such as privacy
preservation, hardware constraints, and latency issues must be
considered to ensure real-world effectiveness.

VI. LIMITATIONS

This work is limited by not sampling all clients at once
and by how different random states affect the results. While
the results are averaged, this is with the same random state
each time, which may or may not have been a favourable state
which is why testing more and averaging over the different
states is future work which should be performed.

In addition, it is limited by not examining how more clients
affect the results and if the accuracy continues to decrease
even more. Flower FL [12] has a simulation module which
could facilitate this for future work.

Another limitation is the assumption of data heterogeneity. In
this research, all clients have the same amount of data samples.
In a real world scenario, this is highly unlikely and unrealistic.
Given this work considers multiple languages, the data each
client receives could be very different in number and language.

Finally, a limitation is that part of the training data is obtained
by translating English data, which is unideal. Emails in other
languages could follow a different structure or wording which
translation does not yield. However, while unideal, this was a
deliberate and carefully considered decision to move the work
forward and obtain results.

VII. FUTURE WORK

Future work could start by investigating further evaluation
metrics such as precision, recall, or F1 which could provide
an interesting further view on the findings.

Another direction could explore comparing against deep
learning models. While the scope of this work is limited to
lightweight models, other research may compare against deep
learning to compare how much accuracy is lost against more
powerful models.

One other future direction could be exploring overfitting
further. While this work simply accepts overfitting occurs
when going from 100 rounds and epochs to 1000, research
could examine how to mitigate overfitting when training at
higher values, including early stopping, regularization, or other
federated learning algorithms.

Finally, an interesting direction would be to further explore
the explainability of models. This could be performed by
examining the odds ratio, as well as performing regularization
or permutation importance testing.
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