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Psychiatric disorders affect millions, yet diagnosis depends on subjective assessments and uneven access to care. To address
these challenges, there is a growing need for Contestable AI (CAI), a framework that extends beyond Explainable Al
(XAI) by allowing clinicians to inspect, question, and revise algorithmic outputs, thereby reducing automation bias and
strengthening accountability. We present Heart2Mind!, a human-centered CAI system for psychiatric disorder prediction that
provides objective evidence while preserving clinical oversight. Heart2Mind collects R-R interval (RRI) time series from Polar
H9/H10 wearable ECG sensors via a Cardiac Monitoring Interface and analyzes them using a Multi-Scale Temporal-Frequency
Transformer (MSTFT) that combines time-domain and frequency-domain features. For contestability, the Contestable Diagnosis
Interface integrates model explanations with dialogue. Self-Adversarial Explanations compare attention-based and gradient-
based explanation maps to flag inconsistent predictions, and a collaboration chatbot helps users verify and challenge outputs.
On the HRV-ACC dataset, MSTFT achieved 91.7% accuracy under leave-one-out cross-validation, outperforming benchmark
methods. Human-centered evaluation with the Human-CAI Consensus Rate showed experts and CAI could confirm correct
decisions and correct errors through readable, efficient dialogues (FKGL ~ 15, median 8.3 minutes, 4 turns). These results
support low-cost wearable CAI screening with objective biomarkers, safeguards, and an interactive path for clinicians to
refine recommendations.
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1 Introduction

Psychiatric disorders are mental health conditions characterized by clinically significant disturbances in cognition,
emotional regulation, and behavior [91]. These disorders include schizophrenia, which involves a combination of
positive symptoms (e.g., delusions, hallucinations) and negative symptoms (e.g., alogia, blunted affect), and bipolar
disorder, which involves extreme mood swings between manic and depressive episodes, sometimes accompanied
by psychotic features. Affecting an estimated 1-3% of the global population, both schizophrenia and bipolar
disorder substantially impact functional independence and quality of life [69].

Psychiatric disorders pose a significant global health burden, with profound personal and societal consequences.
Approximately 90% of individuals who die by suicide have a diagnosable psychiatric disorder [12], and conditions
such as schizophrenia are associated with markedly reduced life expectancy, with mortality rates increasing
by 2.6% over the past decade relative to healthy populations [81]. Despite the standardized diagnostic frame-
works provided by the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) and the International
Classification of Diseases (ICD-11), clinical diagnosis continues to rely heavily on subjective self-reports and
clinician-administered interviews. Even with structured tools, such as the Positive and Negative Syndrome
Scale (PANSS) [5], the assessment process remains time-consuming, variable in quality, and error-prone. Blood
biomarker approaches, although promising, require costly laboratory testing that is inaccessible in many regions
[27]. Therefore, there is an urgent need for automated, accurate, and effective psychiatric disorder prediction.
Wearable cardiography technology offers a promising alternative through heart rate variability (HRV) and R-R
interval (RRI) measurements. These cardiac biomarkers reflect autonomic nervous system function, which shows
dysregulation in psychiatric disorders [9, 28, 62] and correlates with symptom severity [9, 10, 93]. However, previ-
ous Al integration attempts faced limitations from focusing on less precise sensors such as photoplethysmography
(PPG) [28, 42], while AT’s “black-box” nature hinders clinical acceptance.

In our previous work [62], we built an explainable psychiatric diagnosis system that renders model rationales
as textual explanations. That contribution prioritized comprehension, helping clinicians follow the AI's reasoning,
but it did not yet provide a structured path to use those insights to refine or overturn the AI's decision. Meanwhile,
regulators increasingly require transparency and contestability so users can question and correct automated
outputs, as reflected in General Data Protection Regulation (GDPR) [73], EU AI Act [58], Canada’s Directive
on Automated Decision-Making [64], Health Canada [14], UK’s Medicines and Healthcare products Regulatory
Agency (MHRA) [71], U.S Food and Drug Administration (FDA) policies [22], and the Montréal Declaration [66],
which embed rights to explanation, human oversight, and recourse. Ethically, equipping clinicians with tools to
contest Al safeguards patients and affirms that automation should support, not supplant, professional judgment.
In response to these challenges, our research presents the following key contributions:

e We propose Heart2Mind, a human-centered contestable psychiatric diagnosis system that inte-
grates wearable electrocardiogram (ECG) monitoring and a novel Multi-Scale Temporal-Frequency Trans-
former (MSTFT) to classify disorders from RRI time series by fusing multi-scale temporal and wavelet-based
frequency features, enabling continuous objective assessment with short recordings.

e We advance a Contestable AI (CAI) framework, going beyond Explainable AI (XAI), by integrating
Self-Adversarial Explanations (SAE), which identify regions that reflect unfaithfulness in Al decisions by
contrasting attention- and gradient-based explanation maps, with a Contestable Large Language Model
(LLM) that supports collaboration and revision through natural language interaction, preserving clinician
oversight in high-stakes care and transforming Al from passive explanation to active contestation.
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e We propose the Human—-CAI Consensus Rate (HCCR) as a human evaluation metric that quantifies
whether domain experts, collaborating with CAL, achieve the correct final decision, capturing both validation
of true predictions and overturning of errors.

This paper is organized as follows: Section 2 reviews related work on ECG-based psychiatric disorder prediction,
including approaches based on short wearable recordings, and outlines the progression from XAI toward CAI
systems in healthcare. Sections 3 and 4 provide an overview and implementation of the Heart2Mind system,
including the MSTFT model and the integration of a contestable LLM. Section 5 presents experimental results
on diagnostic performance and human-centered contestability evaluation. Section 6 discusses the potential of
wearable ECG in psychiatric disorder prediction and future visions of CAI systems in healthcare. Section 7
concludes with key contributions and future research directions.

2 Related Work

This section reviews recent Al methods for predicting psychiatric disorders using wearable ECG devices, outlines
the shift from XAI toward CAL and highlights prior efforts to develop human-centered CAI systems in healthcare.

2.1 Psychiatric Disorder Prediction from Wearable ECG

2.1.1  Heart-Brain Interaction and ECG Biomarkers. Traditionally, biomarker-based psychiatric disorder predic-
tion has centered on neurophysiological signals, most notably electroencephalography (EEG) [72], or biological
data, including magnetic resonance imaging (MRI) [33], functional MRI (fMRI) [88], and genetic analysis [67]. In
contrast, the diagnostic value of peripheral cardiovascular markers has only recently garnered attention in the
context of predicting psychiatric disorders. One of the most crucial organs in the human body is the heart, which is
tightly connected to the brain through various physiological and neurological processes. For instance, psychiatric
disorders often involve physiological dysregulation that can be captured via cardiovascular biomarkers [37, 90].
Several ways of how the heart and brain communicate with each other have been explored [35]:

e Autonomic nervous system (ANS): Heart functions, such as heart rate (HR), blood pressure (BP), and
blood flow (BF), are controlled by the ANS. BP and HR go up during the sympathetic (“fight-or-flight”)
response, which is controlled by the sympathetic nervous system, whereas the same parameters go down
during the parasympathetic (“rest-and-digest”) response, which is controlled by the parasympathetic
nervous system. The brain controls the ANS and can influence the heart’s function through this pathway
[77]. For example, in healthy individuals, higher HRV denotes greater flexibility and adaptability of the
ANS. Conversely, psychological stress and emotional distress can directly suppress HRV by engaging
sympathetic pathways and withdrawing parasympathetic influence [90].

o Stress and emotions: Stress and emotions also affect the rhythm of heartbeats. As an example, when an
individual feels anxiety or fear, the brain orders the heart to speed up and increases BP [76]. Reductions in
high-frequency (HF) power indicate decreased parasympathetic tone, and alterations in low-frequency (LF)
power or the LF/HF ratio suggest sympathetic overactivity [36]. Similarly, sustained stress can alter the
heart’s physiological properties over time, increasing the risk of heart disease [57].

e Heart-brain feedback loop: In a feedback loop known as the “heart-brain axis”, the heart also interacts
with the brain. In this loop, neurotransmitters and hormones (e.g., serotonin, oxytocin) influence both
mood and brain activity [37]. This interaction can also affect the ANS, leading to changes in HR and BP.

The relationship between the brain and the heart is intricate and crucial to human physiology. Knowing how these
two organs interact with one another can help to detect psychiatric disorders, anxiety, and other neurological
conditions accurately and enhance mental health. Empirical researches strongly support the role of ECG-derived
measures in mental health assessment [2, 8, 15, 19, 26, 31, 35, 37, 41, 62, 81, 84, 90].
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Table 1. Summary of Al techniques for ECG-based psychiatric disorder prediction. Rows in shade indicate the studies most
relevant to our work. *HC: Healthy Control, BD: Bipolar Disorder, SZ: Schizophrenia, DP: Depression.

Author ‘ Targets‘ Subjects Features Methods Devices

Valenza et al. [87] BD BD: 14 HRYV features SVM Smartex PSYCHE wearable
ECG

Ainunhusna et al. BD HC: 14, BD: 18 MHR, HRV fea- SUM )

[2] tures

Tiryaki et al. [85] DP Subjects: 79 [80] 1-lead ECG CNN VivaLNK Continuous ECG
Recorder

Zang et al. [92] DP HC: 37, DP: 37 2-lead ECG CNN -

Tasci et al. [81] ANN

BD, HC: 35, BP: 62, Hybrid ensemble classi-

Khare et al. [35] DP.Sz | DP:17,8Z: 119 [82] 12-lead ECG Philips ECG TC20

fiers

Wavelet scattering net-
Telangore et al. [84] vele ering ne

work & Fine KNN classifier
B i hi hical
Corponi et al. [19] BD Subjects: 67 PPG features ma(l)}:ieesllan rerarchica Empatica E4 smartwatch

Buza et al. [13] Convolutional nearest

neighbor
Ksigzek et al. [40] sz/BD | HC: 30, RRI time series SHElS OF SR Polar H10
SZ/BD: 30 [41] GRU-based NN

Time-series Convolutional

Nguyen et al. [62] Attention NN

2.1.2 Al Techniques for ECG-based Psychiatric Disorder Prediction. In recent years, various computational
approaches have emerged for predicting psychiatric conditions from ECG signals. Tasci et al. [81] published a 12-
lead ECG dataset (Psychiatry ECG dataset [82]) and introduced a ternary pattern-based classification model using
multi-level discrete wavelet transform and iterative majority voting, achieving 96.3% accuracy in distinguishing
between bipolar disorder, depression, schizophrenia, and healthy controls. Using the same dataset, Khare et al.
[35] developed ECGPsychNet, which employs decomposition techniques and optimizable classifier ensembles to
achieve 98.2% accuracy. Building on these studies, Telangore et al. [84] combined wavelet scattering networks
with Fine K-Nearest Neighbor classification, achieving 99.8% accuracy via ten-fold cross-validation.

Wearable devices have extended psychiatric monitoring beyond clinical settings [8]. Valenza et al. [87] analyzed
HRYV features, and nonlinear metrics collected via the PSYCHE wearable t-shirt with integrated fabric electrodes
and applied an SVM classifier to forecast mood transitions between euthymic (EUT) and non-euthymic (non-
EUT) states with an average accuracy of 69.0%, reaching up to 83.3% in individual cases. Tiryaki et al. [85]
developed a convolutional neural network (CNN)-based method for ECG depression detection using the VivaLNK
recorder, achieving over 95.0% accuracy. Cella et al. [15] employed Empatica E4 smartwatches [26] to identify
HRYV differences in schizophrenia patients, finding lower vagal tone correlated with symptom severity. Similarly,
Corponi et al. [19] used these smartwatches to study HRV during bipolar episodes, revealing that HRV measures
increased in parallel with symptom improvement. Other notable studies include Ainunhusna et al. [2]’s SVM for
bipolar disorder (93.8% accuracy) and Zang et al. [92]’s 1D-CNN for depression prediction (93.9% accuracy).

While multi-day monitoring provides comprehensive data, researchers have begun investigating shorter
recordings as an alternative. Inoue et al. [31] achieved high accuracy using short-time ECG measurements during
structured yoga exercises. Recently, HRV-ACC dataset [41] stands out as the only publicly available resource that
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provides raw beat-accurate RRI time series from a Polar H10 chest strap together with synchronized accelerometry
for psychiatric assessment. RRI is appropriate for short continuous monitoring because R-peaks give precise beat
timing in 5-minute windows [23] and stay more stable under light movement than PPG [28, 42]. Modeling the
full RRI time series preserves brief and non-stationary autonomic patterns that summary HRV metrics often
average out, enabling the model to capture dynamic heart-brain interactions in short wearable sessions. Using
this dataset, Buza et al. [13] proposed a convolutional nearest neighbor approach, and Ksigzek et al. [40] trained
an ensemble of SVMs and a GRU-based neural network, achieving 80.0-83.0% classification accuracy.

These advances demonstrate that wearable ECG and HRV measurements can capture clinically meaningful
alterations in psychiatric disorders, creating promising opportunities for non-invasive and continuous assessment
with short recordings. However, prior studies on RRI time series have focused almost entirely on time-domain
information, either operating directly on raw RRI time series or incorporating automatically derived HRV features
that combine simple time- and frequency-domain statistics [13, 41, 62]. To date, no studies have introduced a
learned representation of RRI that integrates temporal dynamics with frequency-domain structure in a unified
model. Also, the challenge remains to develop algorithms that maintain high accuracy with minimal data while
ensuring that “black-box” models are validated across diverse populations and real-world settings.

2.2 From XAl to Human-centered CAl Systems in Healthcare

2.2.1 XAl Applications in Healthcare. Despite several remarkable advances in ECG-based psychiatric disorder
prediction techniques, significant challenges remain before these technologies can be successfully translated into
clinical practice. The “black-box” nature of advanced Al techniques poses a barrier to clinical acceptance and
implementation. Hence, in the healthcare context, XAl has grown rapidly and has proven particularly valuable,
enhancing diagnostic accuracy, building trust among practitioners and patients, and ensuring ethical use of Al
technologies [6, 33, 56, 59]. XAI applications provide clinicians with insights into Al-driven diagnostic decisions.
Several XAl techniques have been proven valuable in clinical research: post-hoc explanations [48, 74, 75] that help
identify where and why a “black-box” focuses, or counterfactual explanations [34] that enable exploration of what-
if scenarios. Recent research shows healthcare explainability advancing through three complementary directions:
(1) aligning explanations with human cognition, (2) enabling interactive clinician engagement, and (3) adapting
explanations across modalities. These trends move XAI from static visualizations toward human-centered systems
integrated into clinical workflows:

o Human-cognition and psychology alignment: Modern XAI applies cognitive psychology to align
explanations with clinicians’ reasoning. Zhang and Lim [94] proposed contrastive why A not B narratives,
while studies highlight empathy, familiarity, and causal framing as key for human-aligned explanations,
favoring storytelling and domain-specific language over gradient maps [21].

o Interactive and human-in-the-loop explanations: Interactive explanations reflect the social nature
of human explanations [55]. Static explanations are evolving into interactive systems where users can
modify instance attributes [18] or create theory-driven explanations [89], or examine updated predictions
by what-if counterfactual questions to improve decision accuracy [53].

e Modality-adaptive explanations: Multi-modal XAI integrates visual, textual, and interactive elements
through concept-based and LLM-driven reasoning [60-62, 68], improving comprehension and supporting
richer human-AlI collaboration.

For psychiatric disorder prediction, various XAl approaches have been applied across modalities. Arias and
Astudillo [6] applied SHAP [48] to XGBoost for schizophrenia prediction using EEG-derived features. Jimenez-
Mesa et al. [33] used LIME [74] and SHAP on MRI scans for schizophrenia classification. Misgar et al. [56] applied
GradCAM [75] to visualize time series model’s classification of psychiatric patients’ motor activity.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:6 « Nguyen et al.

2.2.2  Beyond Explaining: Towards Human-Centered CAl Systems in Healthcare. While explainability provides
transparency, recent regulations and clinical realities demand that healthcare Al systems go further by empowering
clinicians not only to understand Al decisions but also to meaningfully challenge and correct them, leading us to
explore human-centered CAI systems, as illustrated in Fig. 1.

Human-centered Contestable AI (CAI)

Human-centered Explainable AI (XAI) - |can understand the Al's reasoning

both visually and textually.

Human-Cognition Alignment Interactive Explanations Multi-modal Explanations - | can see which features influenced
the model’s decision.

« Contrastive narratives « Social nature of explanations ¢ Multiple modalities - | can use the Al's explanation to

« Cognitive psychology o Interactive interfaces o Multimodal LLM integration support my clinical judgment.

o Causal framing o "What-if" explorations ¢ Visual reasoning

« Storytelling approach o Real-time updates « Textual explanations

- | can challenge the Al's decision and
provide my reasoning.

- | can test alternative hypotheses
[ Beyond Explaining ] through interactive dialogue.
T TT | - | can maintain oversight and ensure
Built-in Safeguards User Input Channels Override and Escalation Paths the final decision remains mine.
Constrain Al Behavior Feedback and Corrections Question and Recalibrate Al

Fig. 1. Evolution from Human-centered Explainable Al (XAl) toward Contestable Al (CAl) System.

Contestability goes one step further than explainability: beyond merely understanding the AL, human users
must be able to question, intervene in, and correct the AI’s decisions. Recent regulations, such as the GDPR [73]
and EU AI Act [58], emphasize the importance of model interpretability in healthcare applications. A requirement
of transparency or explainability can be found in legislation. Articles 13 and 14 of the GDPR specify that if data
subjects are profiled, they have a right to “meaningful information about the logic involved.” This applies to
the medical context as explained in the official EU guideline. GDPR’s requirement for explainability should be
understood as a requirement for contestability, where AI decision-making must be explainable to a degree that
allows an individual to contest the system’s decision. Specifically, Article 22 states that in cases where a data
subject may legitimately be subjected to automated decision-making, including profiling, the data controller
should safeguard the data subject’s right “to express his or her point of view and to contest the decision” [73].
Similarly, the Canadian Directive on Automated Decision-Making [64] directly addresses contestability through
specific requirements related to the recourse mechanism, where Section 6.4 explicitly states, “providing clients
with any applicable recourse options that are available to them to challenge the administrative decision.” Other
regulations, such as Health Canada [14], UK’s MHRA [71], U.S FDA [22], or Montréal Declaration on Responsible
AJ [66] highlight facets of contestability, from rights to human oversight and explanation to mechanisms for
appeal, in the context of Al and automated decision-making. As a response to recent regulations that emphasize
the ability to contest the Al decision and make explanations more human-oriented [55], CAI goes beyond XAI by
enabling users to actively challenge and dispute those decisions based on the provided explanations, essentially
giving them the ability to contest the AI's output in a meaningful way. It is not just about understanding the
reasoning but also having the agency to question and potentially overturn a decision if necessary [3, 49]. Based
on the regulatory frameworks presented that consistently emphasize human agency in questioning Al decisions,
from GDPR’s “right to contest,” to Canada’s requirement for “challenge” mechanisms, to various health authorities’
emphasis on oversight and appeals, we define the CAI system as follows:
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Contestable Al System

An interactive computational system that allows human challenge throughout its decision-making lifecycle,
maintains conscious transparency of its operational processes, and incorporates a safeguard mechanism to
constrain algorithmic behavior.

In healthcare Al systems, CAI enables clinicians and patients to challenge algorithmic outputs and meaningfully
influence outcomes. This aligns with clinical practice where diagnoses and treatments evolve collaboratively,
with second opinion requests and initial assessments refined. AI recommendations should therefore never be
considered final. While concrete examples are still emerging, promising prototypes exist. Hirsch et al. [29]
developed an automated psychotherapy feedback system where therapy session evaluations are transparent
and disputable. Their design provided detailed metric explanations, allowed users to trace Al reasoning to raw
data, and, crucially, offered mechanisms to record disagreements or add context missed by Al This interactive
contestability keeps human experts in control, with Al assisting analysis while therapists can correct records,
preventing blind reliance on imperfect algorithms. Ploug and Holm [70] advocated for patient-centric CAI
diagnostics, identifying prerequisites for effective contestation: including informing users about data usage,
biases, accuracy, and clinical validity, as well as early defining Al’s role. Additionally, mental health AI tools
should communicate their limitations (e.g., reduced reliability for older populations if trained primarily on
younger subjects) so clinicians know when to question them, within workflows that allow these questions to
alter decisions (e.g., triggering human review when algorithmic outputs appear questionable).

In summary, building XAI and CAI systems in the healthcare context, particularly in mental health, is now
recognized as vital for the safe, ethical, and effective deployment of these systems. Explainability provides
transparency and insight, enabling clinicians to integrate Al recommendations into their decision-making process
with appropriate confidence. Contestability ensures that clinicians and patients remain empowered, so that the
Al is a tool at their service rather than an opaque authority. Together, a human-centered CAI system should
emphasize features such as:

(1) Human-centered explanations to ground any contestation, because users can only know when to contest
a decision if they understand the rationale behind models, even without or with very little knowledge about
AT and XAl Explanations should adapt to match user expertise and context, providing simplified content
for less experienced users while offering technical depth for human experts. The system should assess user
needs and adjust explanation complexity, style, and focus accordingly. Effective explanations optimize utility
metrics, including usefulness, readability, intractability, plausibility, faithfulness, and fairness, incorporating
user feedback to refine communication strategies [63, 70].

(2) Built-in safeguards to constrain the behavior of Al systems, where procedural safeguards restrict unilateral
Al systems’ decisions. One type of safeguard involves creating a self-adversarial decision-making process,
such as using different XAI [63] or reliability techniques, including computational argumentation [24],
uncertainty scores, and domain-specific rule checks. Another can be achieved by introducing a second
automated system external to the controlling organization, through which machine decisions are made.
When inconsistencies arise between primary system and verification mechanisms, the case can either be
escalated for human expert evaluation or handled through built-in conflict resolution protocols.

(3) User input channels for feedback and corrections allow users to provide alternative suggestions, with the
system acknowledging input by updating model or logging disagreements. These channels must integrate
seamlessly into workflows, creating audit trails that support accountability and enable continuous learning
from human expertise, transforming Al from a static tool into a collaborative partner.

(4) Override and escalation paths enable users to ask follow-up questions, validate or correct input data, and
observe how outputs change. Reject/override mechanisms either recalibrate recommendations or re-route
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Fig. 2. Overview of the Heart2Mind system: (a) Cardiac Monitoring Interface (CMI), (b) Contestable Diagnosis Interface
(CDI) encompasses (c) Contestable LLM with Built-in Safeguard and Human—-CAl Collaboration Chatbot as core modules.

decisions to human supervisors for review. Multi-model agreement, where multiple models or algorithms
cross-validate interpretations, strengthens reliability. Governance mechanisms should monitor for drifts
or biases, with safety constraints requiring human confirmation for high-stakes decisions. These paths
operationalize regulatory guidelines by ensuring transparent audit trails and meaningful human oversight

throughout the decision-making process.

3 Heart2Mind System Overview

This section introduces the Heart2Mind system, a human-centered CAI system designed for psychiatric disorder
prediction to ensure transparency and preserve human oversight in clinical decision support. As illustrated in
Fig. 2, the system consists of two primary interfaces: (1) Cardiac Monitoring Interface (CMI) and (2) Contestable
Diagnosis Interface (CDI), where the CDI incorporates both built-in safeguards and a contestable LLM system to

operationalize human-—AlI collaboration, detailed as follows:

(1) Cardiac Monitoring Interface (CMI) (Fig. 2a): CMI is a web-based platform that captures real-time
cardiac signals (ECG, HR, and RRI) from wearable Polar H9 and H10 sensors via Bluetooth Low Energy
(BLE). The interface preprocesses, encrypts, and stores the signals in a secure clinical database. Sessions
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can occur in supervised clinical settings, remote telehealth environments, or independent home use. This

design enables continuous, privacy-compliant monitoring using accessible wearable devices.

(2) Contestable Diagnosis Interface (CDI) (Fig. 2b-c): CDI functions as the main decision-support environ-
ment that presents model predictions, generates visual explanations, and enables clinicians to contest or
refine Al outputs. It comprises three integrated modules:

(a) Base Prediction Model: Multi-Scale Temporal-Frequency Transformer (MSTFT) forms the di-
agnostic foundation, processing RRI time series to classify each case as “control" or “treatment. It
captures both temporal rhythm patterns and spectral information using multi-scale temporal convolu-
tions and wavelet-based frequency transforms, which are fused through cross-attention and self-attention
mechanisms, enabling the robust classification of psychiatric conditions from short wearable sessions.

(b) Built-in Safeguards: Self-Adversarial Explanations (SAE) enhances reliability by comparing attention-
based and gradient-based visual explanations of the MSTFT’s reasoning. It highlights regions where
the two explanation methods disagree, signaling potential unfaithfulness in model focus. When these
discrepancies exceed a threshold, the case is automatically flagged as uncertain and prioritized for human
review. SAE thus serves as a built-in safeguard that constrains unilateral model decision-making and
supports transparent diagnostic reasoning.

(c) Contestable LLM integrates an LLM to transform explainability into interactive contestability. It
interprets MSTFT predictions, SAE discrepancies to generate contextual natural language explanations
that clinicians can interrogate, verify, or dispute. Contestable LLM system is structured around two
complementary mechanisms:

(i) Built-in Safeguard Integration: Contestable LLM assesses SAE discrepancy regions together with the
base model prediction to decide whether to retain the original output or propose a new decision. Also,
if an intervention request is made, a collaboration process with the human is started to incorporate
human knowledge and to finalize the decision.

(i) Human-CAI Collaboration Chatbot: The chatbot provides an interface where the human can review
the prediction, inspect explanation maps and discrepancy regions, and assess the model reasoning
while requesting deeper analysis or additional information through dialogue. Each session becomes
a collaboration between algorithmic evidence and clinical expertise, ensuring that human oversight
remains decisive in the final outcome.

Data Pipeline. The system leverages RRI as the primary input for psychiatric disorder prediction due to its
beat-level precision and stability during short continuous monitoring sessions. The MSTFT model processes raw
RRI time series to capture dynamic autonomic patterns that standard summary statistics average out. To support
the contestable LLM and facilitate clinician understanding, we compute standard HRV metrics (time-domain and
frequency-domain features) from detected discrepancy regions identified by SAE. These metrics provide clinically
familiar, interpretable summaries that enhance transparency and enable effective human-AI collaboration.

4 Implementation

This section describes Heart2Mind’s implementation: (1) CMI serves as the foundational interface for seamless
continuous monitoring of high-quality cardiac signals from wearable devices, and (2) CDI enables clinicians
to view initial base MSTFT model’s psychiatric disorder predictions, examine explanations and discrepancies
through the built-in safeguard, and collaborate with the contestable LLM to finalize decisions.

4.1 Cardiac Monitoring Interface (CMI)

4.1.1  Wearable ECG Monitor. Our system uses Polar H9/H10 sensors, selected for their high precision in single-
lead ECG signal acquisition and HRV measurements [45]. Both devices capture HR in beats per minute (BPM)
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and RRI in milliseconds (ms) with a 1-second sampling rate, while the H10 additionally records single-lead ECG
at 130 Hz with measurements in microvolts (#V), providing richer physiological data for the analysis.

4.1.2 Interface. Building upon the BleakHeart library [79], we developed the monitoring interface that integrates
with wearable devices to capture real-time cardiac signals and store them securely in an encrypted database.
Appendix A details the recording workflow and modular architecture. The recording process begins with users
self-entering their personal information (name, age, and sex), which is encrypted using a unique ID key for
privacy compliance, then selecting their device type (H9/H10) to initiate recording. CMI automatically scans
and connects to Polar devices via Bluetooth Low Energy (BLE), configuring appropriate data streams based on
device capabilities (ECG/HR/RRI for H10; HR/RRI for H9). During the session, users can follow light, free-living
protocols that include short corridor walks interleaved with seated rest periods, during which they can sit down
and attend to daily business tasks. Raw sensor data undergoes real-time processing with timestamps synchronized
to the host system clock, ensuring temporal accuracy crucial for HRV analysis. The processed cardiac signals are
simultaneously streamed to the web-based user interface, as shown in Fig. 3, which displays ECG waveforms,
HR, and RRI time series in an intuitive format for clinical observation. Upon session completion, typically after a
predetermined duration (at least 70 minutes), the interface prompts users to stop recording. The collected cardiac
signals are then automatically saved in a structured format and securely transmitted to an encrypted database
accessible to authorized clinicians. This comprehensive data capture and storage approach ensures both the
integrity of the physiological measurements and compliance with healthcare data protection standards.

4.2 Contestable Diagnosis Interface (CDI)

4.2.1 Base Prediction Model: Multi-Scale Temporal-Frequency Transformer (MSTFT). MSTFT processes RRI time
series acquired from CML As shown in Fig. 5, it integrates multi-scale temporal and frequency-domain wavelet
features through cross-attention fusion and self-attention to classify as“control” or “treatment”.

Input Preprocessing and Positional Encoding. Our model begins by processing the raw RRI time series input
x = (X1, Xy, ..., Xr) € RT*! of length T. Recognizing cardio signals recorded from wearable devices often contain
noise artifacts, we enhance model robustness by introducing controlled Gaussian noise N (0, A?) to the input

KKKKKKKKKK —_— | (a) RRI Time Series Viewer 1| (d) Human-CAI Collaboration Chatbot

Device Inf N ‘ @
(a) User and Device Information 1= i o ik WMA,,_»« o
(b) Cardiac Signals Streaming ﬁ -

(b) MSTFT Prediction

| ’

N Ao —— — ,

i
1 "’JM‘\JH‘{“VW . M Hy‘ ““

l

= ® | (c) Self-Adversarial Explanations (SAEs) = ®

0l |

I
1“)"\"}4’.\\« U\l [T ,‘\.V b

Fig. 3. CMI including: (a) User controls and device Fig. 4. CDI including: (a) RRI time series viewer, (b) initial psychiatric
status indicators, (b) Cardiac signals streaming: ECG, disorder prediction by base MSTFT model, (c) SAE built-in safeguard,
HR, and RRI time series. (d) Human-CAI collaboration chatbot.
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sequence X, providing regularization against noise sensitivity during the training phase. Then, the positional

encoding P € RT>4

- . t t
% = C(x+¢) +P, where e ~ N(0,1%); P(; k) = sin (m) » P(roks1) = cos (m) ,

projects the input to higher-dimension space as follows:

(1)

where 7 controls wavelength progression, C denotes the embedding 1D convolutional layer that transforms the

input to dimension d.

Multi-Scale Temporal Convolutions Block (Time Domain). The multi-scale temporal convolutions block captures
cardiac rhythm patterns across multiple scales through dilated convolutions. Starting with the encoded input

Z;O) = X, each layer applies convolutions with exponentially increasing dilation rates:

FO) = GrpNorm [O'g (C‘Zi):zi(Zii)))] s Zgi“) = S(Z;i), F(i)), Vie{o,...,n; — 1},

)
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where Cg =2) represents causal dilated convolutions with dilation rate 2!, GrpNorm(-) provides group layer
normalization, o4(-) is the GELU activation function, n; is the total number of temporal blocks, and S is the
stochastic depth residual learning block. Each subsequent block reduces the number of filters by half to ensure
multi-scale representation learning. Finally, the temporal features Z, are achieved.

Stochastic Depth. We adopt stochastic depth (see Fig. 6) instead of deterministic residual connection because
it improves generalization and test accuracy in deep models, enhances robustness through path diversity, and
reduces expected training compute by executing fewer layers per step [30]. Formally, we implement a stochastic
depth module that introduces probabilistic regularization: S(x, F(x)) = x + 1{u < ps}F(x), where p; is the
survival probability of the residual path and u is a uniform random variable on [0, 1]. During training, randomly
bypassing residual connections lowers the expected depth and shortens backpropagation paths, which eases
optimization. When the skip survives, the identity mapping preserves gradient flow.

4.2.2  Wavelet Transforms Block (Frequency Domain). In addition to the temporal analysis, the frequency domain
block extracts spectral features via learnable wavelet transforms modeled as separable convolutions:

Z0 = Cp®, 7™ = GrpNorm | o (Cs(Z)) | Vi€ {0,...onp - 1), 3)
where Cy initializes frequency-specific 1D convolutional embeddings, Cs is the 1D separable convolutional layer,
ny is the total frequency blocks. Adaptive average pooling adjusts frequency-domain features to match temporal
feature dimensionality to achieve the frequency features Z.

Cross-Attention Fusion Block. This block serves as a critical component for integrating information from the
temporal and frequency domains. This block employs an efficient cross-attention mechanism with learned
projections into a shared embedding space, enabling linear-time computation complexity rather than quadratic
complexity [17] while ensuring balanced representation of both temporal and frequency domains and preventing
single-domain dominance in the fused features [44]. Given the temporal features Z, and frequency features
Zy, we first project them to a common embedding space with dimension d,, using linear transformations
H; = W,Z,,Hy = WyZs, where W, and Wy are learnable projection matrices. The cross-attention mechanism
then operates by treating the temporal features as queries, and the frequency features as keys and values:
Q= H,WQ K = HfWK ,V= HfWV, where W€, WX, and WY are learnable weight matrices for query, key, and
value projections, respectively. Using these projections, each attention head computes:

QW7 (KWHK)”
Vi

where dj is the key dimension. The fused representation F is obtained by concatenating the multi-head output
with original features, followed by layer normalization: F = LayerNorm(Concat[Fpyli, Hy, Hy]).

h; = softmax ( )VWIV, Fuuiti = Concat(hy, ..., h,) WO, (4)

Multi-Head Self-Attention Block. This block enhances the fused representations by capturing long-range
dependencies within the integrated features. Unlike standard transformer blocks, our implementation incorporates
specialized components to improve performance for RRI time series classification. Given the fused representation F
from the Cross-Attention Fusion Block, the multi-head self-attention operation is applied as A = SelfAttn(F, F, F),
where the multi-head self-attention is computed similarly to the cross-attention mechanism, but with the same
sequence serving as queries, keys, and values. To enhance the expressiveness of the model, we incorporate
an attention-gating mechanism G = (WA + by), where W, and b, are learnable parameters, and o is the
sigmoid activation function. The gated attention output is then computed as A; = A © G where © denotes
element-wise multiplication. To maintain training stability, we apply channel-wise scaling with a learnable
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parameter « (initialized to a small value) to the gated attention output. This is followed by a position-wise
feed-forward network with expansion factor to increase model capacity:

F =F+aA,;, F’=LayerNorm(F" + Dropout(FFN(F"))), (5)

where F” represents the final output of the self-attention block. This multi-head self-attention mechanism
effectively captures complex temporal-frequency dependencies in the fused representation, allowing the model
to learn complex patterns in RRI time series.

Classifier Head Block. This block transforms the representation learned by the Multi-Head Self-Attention Block
into the final classification decision. This block employs multiple techniques to maximize information extraction
and classification performance. First, we apply both global average pooling and global max pooling operations to
capture different aspects of the sequence representation. These pooled representations are concatenated to form
a comprehensive feature vector. To ensure stable training, we apply batch normalization to the concatenated
features as:

1
hayg = T Z t=1"F"t, hpy = max F/, h= Concat[hsg hmax], hnorm = BatchNorm(h). (6)

The normalized features pass through dense layers with attention-weighted residual connections, enhancing
feature extraction while maintaining gradient flow, where o, is GELU, and © denotes element-wise multiplication:

hy = 6,(Wihyorm +b1), a=0c(Wshy +bg); hgy = GrpNorm((h; © a) + (W, hyorm +b;)). (7)
Finally, the output layer produces the probability of the input RRI time series belonging to the positive class:
g = O'(Wghout + bo)~ (8)

4.2.3  Built-in Safeguard: Self-Adversarial Explanations (SAE). Research on explanation methods has demon-
strated that different techniques can produce varying attributions, with some consistently highlighting clinically
meaningful features across cases while others show inconsistent patterns. Furthermore, studies have found that
explanation attributions often differ systematically between correct and incorrect predictions [32, 47, 54]. Hence,
as the core built-in safeguard of CAI framework, SAE is designed to detect the discrepancies between different ex-
planation maps, then identify potential inconsistencies in the MSTFT model’s decision-making process. As shown
in Fig. 7, SAE identifies discrepancies by comparing two complementary explanation methods: attention-based
explanation reveals where the model focuses during forward inference, while gradient-based explanation uses
backpropagation to identify features that most strongly influence the final prediction. Contrasting these forward
and backward computational paths provides valuable insights into model faithfulness. When the methods agree,
the model’s forward attention aligns with features that genuinely drive the prediction, indicating decisions based
on clinically relevant patterns. Conversely, when they diverge significantly, the model during inference may
be attending to regions that do not actually influence the final classification when analyzed through gradients,
signaling potentially unreliable or unfaithful reasoning that warrants further clinical review. The implementation
details for both explanation methods are presented as pseudocode in Appendix D.

Attention-based Explanation leverages the attention weights from transformer layers (i.e., cross-attention
and self-attention) to identify regions in the input that contribute most to the model’s predictions. Given a
sequence X = (X1, Xy, ..., XT), We extract attention weights from target layers defined as L. For each layer | € L,

we compute the attention map AY) by averaging across all attention heads: A = % Ih{=1 A;ll), where H is the
number of attention heads and A;ll) is the attention weight matrix from the h-th head in layer I. The combined
attention-based explanation map E.y is generated by averaging across all target layers: Eypty = ﬁ 2ler AD,
To adapt the attention map to the original signal length, we employ an expansion function & that projects the

sequence-level explanations to the time-domain: ET, | = &(Equn, T), where T is the original signal length, and &
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Fig. 7. Self-Adversarial Explanations (SAE) Mechanism as the Built-in Safeguard (See Appendix D for pseudocode).

Normalization

performs a weighted distribution of attention values across overlapping segments. The final expanded map is
normalized using z-score standardization followed by min-max scaling to ensure values lie within [0, 1].
Gradient-based Explanation employs class activation mapping to identify important regions for model

prediction. For each layer I € £, we compute the gradient GV = gy./dF ), where y, is the prediction for

target class ¢ and F) is layer I’s activation output. We average gradients to obtain importance weights a( ) =

Z LSZ ay./ 8F( ) for each feature map k, where Z is the feature maps’ spatial dimension. The gradient-weighted

activation map is L( ) =ReLU(} k - a(l) F(l)) The combined explanation map Egraq = V3] £| 2l Lér) j averages
across all target Iayers Similar to the attentlon based explanation, we expand the gradlent -based explanation to
match the original signal length and normalize it to ensure values lie within [0,1]: E_ = E(Egraa, T).

Discrepancies Detection. The self-adversarial nature of SAE emerges from comparing the two different expla-
nation methods. To enable a temporally consistent comparison, the attention-based explanation is aligned to
the gradient-based explanation using Dynamic Time Warping (DTW) as El, = DTW(E], gra d) ensuring that
both explanation sequences are matched in temporal structure before discrepancy analysis. The discrepancy map
is calculated as the absolute difference between the aligned attention-based and the gradient-based explanation.
High discrepancy regions indicate areas where the two explanation methods diverge, potentially revealing
unreliable patterns that warrant further human inspection. The discrepancy regions are defined as:

D = Ms|1(IBfy — Bl > p) |, ©)

where I(+) is the indicator function that marks time points exceeding the discrepancy threshold p. The operator
M;(-) denotes a §-merge function that joins adjacent positive indices separated by gaps smaller than §, producing
a set of contiguous intervals D = (s;, ¢;)-;. These intervals represent temporally coherent regions of explanation
disagreement, guiding clinician review and interpretability assessment.

attn attn’

4.2.4 Contestable LLM. Contestable LLM transforms MSTFT predictions and SAE discrepancies into interpretable
clinical reasoning that enables human-AlI collaboration. By processing structured physiological evidence, including
baseline HRV metrics and regional metrics from discrepancy regions, LLM grounds its explanations in established
cardiac biomarkers of autonomic function. This design allows clinicians to engage in natural language dialogue
to validate correct predictions or challenge potentially unfaithful decisions flagged by SAE.

HRV Metrics Calculation. To enable clinically meaningful contestability, we extract established HRV metrics
from both complete RRI time series and SAE discrepancies. For each discrepancy region r; = (si, €;) € D, we
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extract time-domain and frequency-domain HRV features, namely Fg. Time-domain features include mean RR
(MRR), Root Mean Square of Successive RRI Differences (RMSSD), Standard Deviation of Normal-to-Normal
intervals (SDNN), Percentage of successive RRI that differ by more than 50 ms (pNN50):

MRR[r;] = ﬁ Z t=s5%X(t); RMSSD[r;] = \/ ! Z t = 5% 1 (X(t+1) — X(1))2

e — Sj
1 N ) 100 S
SDNN[F(] = A ———— Yt = 5, (X() - MRR[ri])%  pNNso[ri] = ——— > 1([X(t +1) = X(1)| > 50).
ei—si+1 e — S =

Frequency-domain features include LF power (0.04-0.15 Hz) and HF power (0.15-0.40 Hz) estimated using
Welch’s method, where P, (f) is the power spectral density at frequency f, w(t) is a window function, L is the
window length, R is the window shift, and K is the number of windows:

K-1 2
1
Power Spectral Density: Py (f) = — E

K k=0

L-1
Z w(t)X,, (t + kR)e /2

t=0

0.40

0.15
LF Power|[r;] =/004 P« (f)df, HF Power|[r;] =[)15 P (f)df.

Human-CAI Collaboration Chatbot. We employ recent open-source LLMs (11ama-4-maverick(17B) [52],
phi-4-mini(3.8B) [1], gemma-3(27B) [83]) as the human-CAlI collaboration chatbot, as they demonstrate
competitive performance on medical domain benchmarks [46]. Each LLM receives identical inputs through a
structured prompt template (see Appendix E) consisting of: patient profile information (when available), initial
MSTEFT prediction g, baseline HRV metrics from the complete RRI series Fg, and regional HRV metrics from
discrepancy regions Fp (when present). The generated explanations provide an intuitive summary of psychiatric
disorder prediction, allowing clinicians to understand the model’s rationale behind its decisions, contest the
faithfulness of the model’s decisions, and collaborate to finalize decisions.

5 Experiments and Results

We evaluate Heart2Mind in 3 stages: (1) assessing MSTFT’s psychiatric disorder prediction accuracy, (2) examining
SAE’s ability to assess MSTFT decision reliability, and (3) measuring how effectively domain experts collaborate
with contestable LLM to finalize decisions through the proposed Human-CAI Consensus Rate (HCCR) metric.

5.1 Dataset

We employed the raw RRI time series of 60 participants of the HRV-ACC dataset [41]: 30 diagnosed with
schizophrenia/bipolar disorder (labeled as “treatment”/positive) and 30 controls (labeled as “control”/negative)
with data samples shown in Appendix C. This dataset is considered balanced for training the model. Each
participant contributed 1.5-2 hours (minimum 70 minutes) of ECG recordings using a wearable Polar H10
sensor, during which they followed light free-living protocols that included short corridor walks interleaved
with seated rest periods. For model training, we transformed each RRI series into a set of overlapping input
sequences X; = (X, X;,, . . ., Xi; ), I = 300, producing N — T + 1 sequences from an original length N. Consecutive
sequences share T — 1 RRIs (x; N X;+1 = {Xi,, ..., X, }). Thus every inner interval x; appears in exactly T contexts
{Xk-T+1, - - -» Xk }. We selected T = 300 to align with standard 5-minute short-term HRV analysis windows, which
provide sufficient duration to capture meaningful autonomic dynamics across both time-domain and frequency-
domain features while remaining practical for continuous wearable monitoring [23]. This sliding-window strategy
exposes the network to diverse local temporal neighborhoods, enhancing its ability to capture short- and mid-
range autonomic dynamics. Before windowing, we rescaled each participant’s RRI signal to zero mean and unit
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Table 2. Comparison of model performance. The best results are in bold, the second-best are underlined, and (-) indicates
that the metric was not reported in the original study. Models marked with T correspond to the ablation variants of MSTFT.

5-fold cross-validation Leave-one-out cross-validation
Model #Params  Acc Pre Rec F1 AUC Acc Pre Rec F1 AUC
Misgar et al. [56] 8.1M 0.766  0.833 0.667 0.741 0928 0.833 0.884 0.767 0.836 0.906
Buza et al. [13] - - - - - - 0.833 - - - 0.910
Ksiagzek et al. [40] - 0.830 - - - - 0.800 - - - -
MTC/Temporal—onlyT 4.5M 0.787 0.747 0.826 0.784 0.895 0.800 0.781 0.833 0.806 0.826
WT/Frequency—onlyT 4.9M 0.776  0.745 0.740 0.742 0.853 0.800 0.765 0.867 0.813 0.813
MTC+WT+Concat ' 5.6M 0.830 0.813 0.899 0.854 0.805 0.850 0.920 0.767 0.836 0.850
MSTFT (Ours) 6.3M 0.891 0.877 0.903 0.890 0.961 0.917 0.963 0.867 0.913 0.940

variance to remove inter-subject scale differences. The resulting sample distribution remains balanced (30 positive
vs 30 negative) and fully anonymized.

5.2 MSTFT - Base Prediction Model Evaluation: Psychiatric Disorder Prediction

This section evaluates the performance of the proposed MSTFT model for predicting psychiatric disorders from
RRI time series and compares it with several established baselines using two validation protocols.

5.2.1 Experimental Setup. To evaluate MSTFT, we compared it with three strong baselines: the attention-guided
method of Misgar et al. [56], the convolutional nearest-neighbor model of Buza et al. [13], and the GRU-SVM
ensemble of Ksigzek et al. [40]. For the implemented models (including our re-implementation of Misgar et al.
[56]), hyperparameters and architectures (Appendix B) were optimized using the Keras Random Search Tuner [65],
reserving 20% of the training data in each split as an inner validation set. For Buza et al. [13] and Ksigzek et al. [40],
we report results from the original studies for comparability. To quantify the contribution of each component, we
performed an ablation study with three MSTFT variants: (1) multi-scale temporal convolutions (MTC; temporal-
only), (2) wavelet transforms (WT; frequency-only), and (3) MTC+WT+Concat (direct concatenation of temporal
and frequency features). We report Accuracy, Precision, Recall, F1, and ROC-AUC under two validation schemes:
(i) 5-fold cross-validation (48 participants train, 12 test per fold; averaged across folds) and (ii) leave-one-out
cross-validation (train on 59 participants, test on 1; repeated 60 times and averaged).

5.2.2 Results. Across both validation schemes, MSTFT consistently demonstrated high performance and strong
generalization capability. As summarized in Table 2, MSTFT achieved the best results in every metric. Under
5-fold cross-validation, the model reached an accuracy of 0.891 and recall of 0.903, outperforming the strongest
baseline [40] by 6.1% in accuracy. Its F1 score of 0.890 and AUC of 0.961 indicated clear separability between
control and treatment cases. The ablation variants revealed distinct performance gaps: MTC (temporal-only) and
WT (frequency-only) paths achieved moderate results, with accuracy of 0.787 and 0.776, respectively, showing
that single-domain features captured only partial dynamics of the RRI signal. The MTC+WT+Concat variant
improved accuracy to 0.830, yet the direct concatenation of temporal and frequency representations still lacked
adaptive weighting, limiting the interaction between the two modalities. Under LOOCV, which provides a more
rigorous, subject-independent evaluation, MSTFT maintained robustness with an accuracy of 0.917 and an AUC of
0.940, outperforming all baselines. The consistent improvement across both 5-fold and LOOCV schemes indicates
that MSTFT generalizes well to unseen individuals, an important property for clinical deployment. Notably, this
level of accuracy was achieved with only 6.3M parameters, fewer than the 8.1M of Misgar et al. [56], showing

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



Heart2Mind: Human-Centered Contestable Psychiatric Disorder Prediction System Using Wearable ECG Monitors « 111:17

that MSTFT attains an effective balance between performance and model size through its cross-attention and
stochastic-skip design. In contrast, MTC (4.5M), WT (4.9M), and MTC+WT+Concat (5.6M) demonstrated that
smaller models without adaptive multi-scale fusion could not achieve comparable results.

These results confirm that accurate prediction of psychiatric disorders depends on jointly modeling temporal
rhythm variability and frequency-domain information. The MSTFT architecture, through its cross-attention
fusion and stochastic depth, effectively captures discriminative time-frequency relationships, yielding both higher
accuracy and more stable generalization compared to single-path or non-adaptive fusion methods.

5.3 SAE - Built-in Safeguard Evaluation: Base Model Decision Reliability Assessment

This section presents the evaluation of the SAE mechanism, which serves as the built-in safeguard of the base
MSTFT model, assessing the faithfulness and internal consistency of the model’s decision-making process. SAE
evaluates discrepancies between the attention-based and gradient-based explanation maps, identifying when
the model’s attention during inference diverges from the features that most strongly influence its predictions.
Such divergences may signal potential unfaithful reasoning, thereby serving as early indicators of unreliable
predictions that warrant further human review. For this evaluation, we employed the best-performing MSTFT
checkpoint from the 5-fold cross-validation, which yielded balanced outcomes: 27 true positives (TP), 27 true
negatives (TN), 3 false positives (FP), and 3 false negatives (FN). To identify meaningful discrepancy regions, we
set the gap tolerance = 300, matching the input window size T, to merge nearby discrepancies that likely reflect
the same underlying autonomic event rather than treating them as separate regions. Using this configuration,
Fig. 8 showed the systematic analysis of the discrepancy statistics across prediction categories and multiple
threshold values.

5.3.1 Discrepancy Patterns. Fig. 8a illustrates that true predictions (TP: z = 0.046, ¢ = 0.075, IQR = (0.004, 0.058);
TN: p = 0.072, 0 = 0.085, IQR = (0.011,0.090)) exhibit much lower discrepancy values compared to false
predictions (FP: i = 0.216, ¢ = 0.200, IQR = (0.025,0.365); FN: i = 0.275, ¢ = 0.192, IQR = (0.109, 0.421)).
The consistent alignment between the attention-based and gradient-based explanations in true prediction cases
suggests that the model reasons faithfully where its attention mechanisms accurately capture the physiologically
meaningful RRI segments that most significantly influence classification. Conversely, the wider spread and
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(a) Distribution of discrepancy values by (b) Probability of exceeding thresholds (c) Frequency of discrepancy regions
categories. TP/TN exhibit lower discrep- and RR. The optimal separation occurs at p = 0.5. FP/FN show substantially
ancy values than FP/FN. at p = 0.5 (RR = 33.1x). higher frequencies than TP/TN.

Fig. 8. Analysis of SAE as the built-in safeguard. (a) Discrepancy values of true predictions are lower than those of false
predictions, (b) Threshold analysis identifies p = 0.5 as the optimal discrimination point with maximum rate ratio (RR), (c) At
p = 0.5, false predictions exceed the threshold substantially more frequently than true predictions.
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elevated mean discrepancies observed in false predictions reflect instability in the model’s focus during inference,
where attention may shift toward irrelevant temporal regions or noisy fluctuations. This pattern supports the
interpretation that faithful model reasoning corresponds to low-discrepancy regions, where the model’s attention-
based map is spatially coherent with the gradient-based one, and thus aligns with the features that drive its
outputs.

5.3.2  Threshold (p) Ablation Study. To further strengthen the safeguard performance, we conducted an ablation

study to determine the optimal discrepancy threshold p that maximizes the separation between faithful and
P(D>plerror)

P(D>p|correct)
A higher RR indicates stronger discriminative power at a given threshold p. We selected p € {0.3,0.5,0.7} for

the ablation study to represent low, moderate, and high discrepancy sensitivities, enabling evaluation of the
safeguard’s behavior across a broad range of flagging thresholds.

As illustrated in Fig. 8b, the RR peaks at p = 0.5, yielding a 33.1x enrichment of errors over correct predictions
where only ~ 0.4% of TP/TN cases are flagged, whereas ~ 13.3% of FP/FN cases exceed the limit (FP 10.9%, FN
15.6%). Lowering p = 0.3 results in over-flagging (37.8% of false cases, 2.3% of true cases, RR = 16.8X), while
raising p = 0.7 under-flags (0.8% of false cases, 0.1% of true cases, RR = 4.0x). Therefore, p = 0.5 offers the most
balanced trade-off, capturing the majority of unfaithful predictions without producing excessive false alarms.
Combined with the higher medians and interquartile ranges of © in FP/FN relative to TP/TN (Section 5.3.1), this
cutoff maximizes discrimination while maintaining interpretability and manageable flagging volume.

Under this optimal p = 0.5, the discrepancy frequency patterns in Fig. 8c further support the safeguard’s
effectiveness. Correct predictions displayed strong alignment between the two explanation modalities: TN cases
had a mean discrepancy count of 0.78 and TP cases 0.72, indicating that disagreements between attention and
gradient maps were minimal and localized. A few outliers reached up to 5 (TP) and 7 (TN) discrepancies but still
yielded correct outcomes, demonstrating robustness to moderate inconsistencies. In contrast, false predictions
exhibited a different profile, with FP cases showing an average of 7.67 discrepancies, ranging from a maximum of
11, while FN cases averaged 7.0, with a maximum of 10.

The results also reveal a clear threshold effect, where prediction reliability begins to decline noticeably once
the number of discrepancy regions exceeds approximately 5 to 6. This observation carries important clinical
implications, as monitoring the frequency of such high-discrepancy regions allows the system to automatically
flag predictions that may be unreliable. In doing so, the SAE provides an inherent mechanism for quantifying
uncertainty that operates directly during inference, supporting proactive human oversight.

unfaithful model behaviors. To quantify this separation, we defined the rate ratio (RR) as RR(p) =

5.4 Contestable LLM Evaluation: Base Model Decision Justification and Enhancement

Building on the SAE safeguard analysis in Sec. 5.3, this section tests whether a contestable LLM can operationalize
those safeguards by interpreting SAE discrepancies to justify or revise MSTFT predictions. We evaluate each
model’s reliability as a human—-CAI collaboration chatbot, focusing on its ability to confirm correct outputs and
challenge incorrect ones using only physiological evidence. To isolate reasoning over SAE discrepancies and HRV
metrics, we excluded domain-specific clinical knowledge from the prompts. We evaluated three open-source LLMs
at different scales: phi-4-mini(3.8B), 11ama-4-maverick(17B), and gemma-3(27B). Each model received the
same structured inputs, including patient profile information, the baseline MSTFT prediction, global HRV features,
and regional HRV metrics from discrepancy segments. For fair comparison, we fixed generation settings across
models: maximum tokens 2048, temperature 0.8, and top-P 0.1.

As shown in Table 3, all three contestable LLMs successfully retained every correct MSTFT prediction (27 TP +
27 TN), confirming their ability to interpret coherent HRV patterns when SAE discrepancies are minimal. This
alignment reflects that in faithful reasoning scenarios, characterized by low disagreement regions (p = 0.5), LLMs
can reproduce clinically consistent explanations. More critically, contestable LLM’s effectiveness was tested on
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Table 3. Performance of contestable LLM in justifying or overturning MSTFT predictions with SAE’s discrepancies. Arrows
(1/1) denote the desired direction of improvement.

Model Retain (TP)T  Retain (TN)T  Overturn (TP/TN)|  Overturn (FN)T  Overturn (FP)T  Retain (FN/FP)|
1lama-4-maverick(17B) 27 27 0 0 1 5
phi-4-mini(3.8B) 27 27 0 1 0 5
gemma-3(27B) 27 27 0 2 1 3
Human-Contestable AI Consensus Rate (HCCR) Metric Framework
Initial Human Initial Base  Contestable Al Human-CAI Initial Human Initial Base  Contestable Al  Human-CAl
Decision Al Decision Decision Consensus Decision Al Decision Decision Consensus
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Fig. 9. Human-Contestable Al Consensus Rate (HCCR) Metric Framework.

the 6 erroneous MSTFT predictions (3 FN, 3 FP). All LLMs overturned at least one incorrect case, demonstrating
varying degrees of autonomous contestation. The largest model, gemma-3, achieved the highest correction rate,
overturning 3 of 6 errors (2 FN, 1 FP), followed by 11ama-4-maverick with one FP correction, and phi-4-mini
with one FN correction. These results suggest that larger models exhibit stronger interpretive reasoning for
identifying unfaithful MSTFT decisions, although smaller models display complementary strengths across error
types. Overall, this evaluation shows that contestable LLM can effectively leverage SAE discrepancies to both
affirm reliable predictions and contest unfaithful ones, advancing from static explainability to active contestability.

5.5 Human-centered Contestability Evaluation: Human-CAl Consensus Rate (HCCR)

To evaluate human-centered contestability within Heart2Mind, we propose the Human—-CAI Consensus Rate
(HCCR) metric, designed to measure how effectively humans collaborate with CAI to reach the correct final
decision. This metric captures both the outcomes and processes of contestation, emphasizing not only the accuracy
achieved after collaboration but also how contestation improves or undermines the reliability of decisions.

5.5.1 Metric Definition. As shown in Fig. 9, HCCR traces the full trajectory of decision-making through four
stages: (1) Initial human decision; (2) Initial base Al decision, (3) CAI decision informed by explanations,
and (4) Human-CAI consensus after collaboration. Each case is categorized as either a true or false prediction,
depending on its consistency with the ground truth. HCCR defines every possible decision path connecting these
four stages and assigns an ordinal level that represents how contestation influenced the final outcome. Defined
levels, ranging from -3 to +3, quantify the effectiveness of contestation, while undefined states (U1-U4) correspond
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Table 4. Summary of HCCR outcome levels (defined and undefined states). Each row represents a trajectory of the decision
process across four stages: initial human decision — initial base Al output — CAIl decision — Human-CAIl consensus, each
evaluated against the ground truth (V= true, X= false). Defined levels [0, 1, +2, +3] quantify contestation effectiveness, while
U1-U4 are non-scorable states, reflecting system or interaction irregularities rather than genuine contestation outcomes.

Level Formal name Path Description
[-3] Contestation Break- v—X—/—X Human begins correctly, the base Al issues an incorrect output, the CAI provides the correct
down recommendation, yet the final consensus turns wrong. This reflects miscalibrated trust that

overrides both the initial human judgment and CAIL

[-2] Failed Contestation XKoo V-X Human begins incorrectly, base Al and CAI identify the correct label with justification, but fail
to persuade, so the final consensus remains wrong.

[-1] Low Contestation Ef- X— X— /— X Human and base Al begin incorrectly, the CAI is correct, but its evidence or interaction is
fectiveness insufficient to reverse the error, leaving the final consensus wrong.

[0] Neutral Contestation e X A Human, base Al, and CAI are all correct, and the dialogue simply confirms the correct decision.

[+1]  Human Contestation —X—/—V/ The human is correct while the base Al is wrong; the CAI aligns with the human and helps retain
Success the correct decision, yielding a correct consensus.

[+2]  AI Contestation Suc- X—v/—>vV—>V/ The human is wrong while both the base AI and the CAI are correct; dialogue overturns the
cess human decision and reaches a correct consensus.

[+3]  Joint Contestation Suc- X— X— /— / Human and base Al are wrong; the CAI supplies the correct alternative and successfully steers
cess the discussion to a correct consensus.

[U1]  Invalid Contestation V/X— /— X— @  The base Al is correct, but the CAI outputs an incorrect challenge. By design, the CAI must not
flip a correct base decision, so this path is blocked.

[U2]  Omitted Contestation v — X—X— @ The human is correct and the base Al is wrong, yet the CAI fails to intervene or to challenge the
error; there is no contestation episode to score, so no consensus state is recorded.

[U3] Post-Consensus Per- vV—/—/—X After all stages are correct, a consensus flip occurs without new evidence, logged as decision
turbation instability and not a valid contestation outcome.
[U4] Persistent Error X X—>X—> 0 Human, base AL and CAI are all wrong, and no contestation progresses to a consensus state; this

logs a persistent error rather than a scorable outcome.

Table 5. Summary of human-centered contestability evaluation in HCCR, readability, and interactability. Time to Decision
(TTD) and Dialogue Length (DL) are reported as median [min-max].

Human-CAI Consensus Rate (HCCR) Readability Interactability

[-3] [-2] [-1] [o] [+1] [+2] [+3] MeanFKGL TTD (min:s) DL (turns)

TP 0 7 5 14.6 7:24 [3:45-14:41] 3 [1:4]
FN 0 1 8 3 15.4 8:30 [3:12-17:34] 4 [1:6]

to irregular or disallowed interaction patterns that do not constitute valid contestation. As detailed in Table 4,
lower scores indicate breakdowns or failed contestation, while higher scores reflect successful collaboration
between human and Al agents. HCCR can also generalize beyond one-to-one human-AI settings to more complex
interactions such as many-to-one (e.g., multiple healthcare specialists collaborating with a single CAI) or many-
to-many (e.g., multiple collaborations between different specialists and CAI agents). This flexibility allows HCCR
to serve as a generalizable measure of collaborative decision reliability across human-centered Al systems.

5.5.2  Experimental Setup. Within the psychiatric disorder diagnosis setting, the four stages are defined as follows:
(1) Initial human decision: the clinician analyzes the RRI time series and issues a preliminary judgment without
Al support; (2) Initial base Al decision: base MSTFT model predicts the class label; 3) CAI decision: contestable
LLM (gemma-3 was chosen due to its stable and superior performance evaluated in Section 5.4), supported by
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SAE discrepancies, provides its own classification and rationale; and (4) Human-CAI consensus: the user, after
interacting with the CAI through CDI and contestable LLM chatbot, finalizes the decision. For evaluation?, 12
participants with diverse expertise were recruited: 1 in cognitive psychology, 2 in biomedical engineering, 7 in Al
and 2 in human-computer interaction (HCI). Each participant completed two diagnostic sessions using the CDI
interface: (1) Correct prediction case: base MSTFT model correctly classified the sample, and contestable LLM was
expected to validate and retain this outcome. This case evaluated the CAI’s ability to confirm consistent reasoning
and support correct decisions; (2) Incorrect prediction case: base MSTFT model incorrectly classified a sample,
and contestable LLM was expected to overturn the misclassification. This study tested whether human-CAI
collaboration could identify inconsistencies and guide decisions toward the correct outcome. To complement
HCCR, additional human-centered measures were included to provide a more comprehensive evaluation of
system usability and interpretability: (1) Flesch-Kincaid Grade Level (FKGL) [Readability] estimates the
U.S. school grade needed to comprehend a text [16]. FKGL values around 16-17 are typical for specialist medical
literature, which supports using a similar grade-level ceiling when writing for clinicians and domain experts [7];
(2) Time to Decision (TTD) [Interactability] records elapsed time from case presentation to final decision; (3)
Dialogue Length (DL) [Interactability] records the number of conversational turns to reach the final decision.

5.5.3 True Positive Case Analysis. In the correction prediction (TP) case (treatment_40), the base MSTFT model
correctly classified the case as “treatment,” and contestable LLM was expected to retain this decision. This
case contained 5 SAE discrepancy regions (Fig. 10), which represented the highest number of inconsistencies
observed among correct predictions. Despite this, all three contestable LLMs converged on the same “treatment”
classification, showing consistent physiological reasoning and high interpretability. 11ama-4-maverick focused
on ‘significant variability across different regions” and “lower parasympathetic activity indicators”, emphasizing
differences in local HRV patterns that aligned with reduced vagal tone. phi-4-mini identified “regional discrepan-
cies in HRV metrics” and “variability in LF/HF ratios across regions”, showing similar regional reasoning but with
slightly less depth in autonomic interpretation. gemma-3 described “regional discrepancies indicating autonomic
instability” and “low vagal tone indicators (RMSSD, pNN50)”, offering a more comprehensive and clinically precise
explanation of autonomic imbalance. Regarding response time, 11ama-4-maverick produced its output in just
10.04 seconds, significantly faster than the smaller phi-4-mini (24.40 seconds), which highlights its potential
suitability for real-time clinical applications where rapid validation of correct decisions is crucial.

Human-centered evaluation supported these observations. As shown in Table 5, out of 12 sessions, 7 were [0]
Neutral Contestation and 5 were [+2] Al Contestation Success, showing that when experts initially disagreed,
CAI successfully guided them back to the correct decision. The responses were concise and readable (FKGL 14.6),
with efficient interactions (median time to decision: 7:24 minutes, range: 3:45 to 14:41; median dialogue length: 3
turns, range: 1 to 4).

5.5.4 False Negative Case Analysis. In the incorrect prediction (FN) case (treatment_1), the base MSTFT model
incorrectly classified a “treatment” sample as “control,” and contestable LLM was expected to overturn this error.
This case contained 7 SAE discrepancy regions (Fig. 12), the highest observed among all misclassified samples,
illustrating substantial disagreement in HRV patterns across regions. The case was therefore particularly suitable
for evaluating how the CAI reasoned through uncertainty and complexity.

Both gemma-3 and phi-4-mini correctly identified autonomic dysregulation patterns characteristic of psy-
chiatric conditions and successfully overturned the baseline “control” prediction to “treatment.” phi-4-mini
highlighted “reduced parasympathetic activity (low RMSSD and pNN50)” and “reduced overall HRV (low SDNN
in some regions)”, showing an accurate focus on diminished HRV and parasympathetic withdrawal. gemma-3
described a “pattern of autonomic instability” and “fluctuations in LF/HF balance with periods of reduced HRV,”

ZParticipant session videos are available at https://www.youtube.com/playlist?list=PLW TlzhO-RmiwdSjadQCfp8hpAF8RducVL
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capturing both temporal and spatial irregularities in HRV that correspond to clinical features of psychiatric
dysregulation. In contrast, 11ama-4-maverick retained the incorrect “control” classification, justifying that “the
fluctuations are within the realm of normal variability”. This reflected a more conservative interpretation of the
HRYV variance, suggesting narrower sensitivity in recognizing autonomic pathology.

Human-centered evaluation confirmed the CAI’s effectiveness in corrective collaboration. Out of 12 sessions, 8
were [+1] Human Contestation Success, 3 were [+3] Joint Contestation Success. Notably, there was 1 case of [-1]
Low Contestation Effectiveness, where the participant interpreted the irregular RRI pattern as a signal artifact
rather than a treatment-related feature, underscoring a current CAI limitation discussed in Section 6.2 toward
future multimodal integration. Most of sessions required slightly more deliberation (median time to decision:
8:30 minutes, range 3:12 to 17:34; dialogue length: 4 turns, range: 1 to 6) and used more technical language (FKGL
15.4), consistent with the higher reasoning demands of error correction. The larger gemma-3 model produced the
most accurate and detailed rationales but required longer generation time (36-38 seconds), whereas the smaller
models were faster but less reliable when confronted with ambiguous patterns.

Together, TP and FN analyses demonstrate that human—CAI collaboration was effective in both validating
correct outcomes and recovering from model errors. In the TP case, the CAI strengthened clinician confidence by
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Fig. 10. SAE discrepancies of the TP case (treatment_40): (a) Raw input RRI time series, (b) Gradient-based Explanation, (c)
Attention-based Explanation, and (d) 5 discrepancies detected by SAEs.
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1lama-4-maverick (17B)  0.61 rit, 93 tps, 880 toks, 10.04 s

Initial Al ification The initial 1t was "Treatment." To justify this, we need to consider whether the HRV metrics and their variations suggest any abnormality that could be
associated with psychiatric disorders like schizophrenia or bipolar disorder.
1. Reduced HRV - Lower HRV has been associated with various psychiatric conditions, including schizophrenia and bipolar disorder. While the baseline RMSSD and SDNN are within relatively
normal limits, the variations and sometimes lower values in regional analyses might indicate periods of reduced HRV.
2. Variability and Instability - The significant variability in HRV metrics across different regions could indicate instability in autonomic nervous system function, which might be relevant in the context
of psychiatric disorders.
Finalizing the Decision The baseline HRV metrics show a relatively normal to high HRV, but with significant variability across different regions. Some regions show lower RMSSD and pNN50 values,
indicating potential periods of lower parasympathetic activity. The variability and sometimes lower HRV metrics could be indicative of autonomic nervous system dysfunction or instability, which has been
linked to various psychiatric conditions. After reviewing all the evidence, the decision remains "Treatment" because the variability in HRV metrics and the presence of regions with lower parasympathetic
activity indicators could suggest underlying autonomic dysfunction that may be associated with psychiatric disorders.
Reasoning: The justification is based on the observed variability in HRV metrics and the potential indication of autonomic nervous system instability. Studies have shown that reduced HRV and variability
in HRV metrics can be associated with psychiatric disorders.
Final Decision: Treatment

phi-4-mini (3.8B)  0.30rit, 30 tps, 732 toks, 24.40 s

Interpretation:

« The significant regional discrepancies in HRV metrics, particularly the reduced RMSSD, SDNN, and pNN50 in several regions, suggest inconsistent autonomic regulation.

« The variability in LF/HF ratios across regions indicates fluctuating autonomic balance, which can be associated with psychiatric conditions like schizophrenia or bipolar disorder.

Clinical Guidelines and Evidence:

+ HRV abnormalities, particularly reduced RMSSD and SDNN, have been associated with psychiatric disorders, including schizophrenia and bipolar disorder.

« The inconsistency in autonomic regulation across different regions may reflect underlying neurobiological dysregulation common in these disorders.

Final Decision: Given the significant regional discrepancies in HRV metrics and their association with psychiatric disorders, the initial prediction of "treatment” is justified. The evidence suggests
autonomic dysregulation, which is often seen in conditions like schizophrenia and bipolar disorder.

Final Decision: Treatment

gemma-3 (27B)  0.19rit, 38 tps, 1441 toks, 38.19 s

Cr idation & Clinical
« Schizophrenia & Bipolar Disorder: Both conditions are frequently associated with altered HRV, often characterized by reduced HRV metrics (RMSSD, SDNN) and increased sympathetic activity.
« Autonomic Dysfunction: The observed HRV patterns align with autonomic nervous system dysfunction, a common feature in many psychiatric illnesses.
Urgent Concerns: No immediate life-threatening concerns are identified. However, the HRV profile warrants further investigation to determine the underlying cause of the autonomic dysregulation.
Final Decision: Treatment.
The totality of the evidence, including the low baseline HRV metrics (RMSSD, SDNN), regional discrepancies indicating autonomic instability, and alignment with HRV patterns observed in schizophrenia
and bipolar disorder, supports the initial assessment. While the LF/HF ratio isn't dramatically skewed, the low vagal tone indicators (RMSSD, pNN50) are more concerning in the context of potential
psychiatric illness.

Fig. 11. Response excerpts of contestable LLMs in TP case, where they retained initial correct prediction of baseline MSTFT.
Output metrics: time to first token (rtt), token per second (tps), number of output tokens (toks), output time (s).

providing confirmatory reasoning, whereas in the FN case, it actively supported corrective reasoning, resulting in
accurate consensus in 11 of 12 sessions. HCCR distributions reflected this adaptability: stable confirmation under
low uncertainty and productive contestation under high discrepancy. Larger models such as gemma-3 consistently
exhibited stronger interpretive capacity, whereas 11ama-4-maverick offered superior responsiveness, highlight-
ing a tradeoff between reasoning depth and latency. Overall, these findings emphasize the promise of contestable
LLMs as transparent, collaborative diagnostic partners capable of maintaining accuracy, interpretability, and
clinical efficiency across both stable and uncertain decision contexts.

6 Discussion
6.1 Potential of Wearable ECG Devices in Psychiatric Disorder Prediction

Wearable ECG devices are emerging as powerful psychiatric care tools, measuring heart activity and HRV
to assess ANS function, which shows dysregulation in schizophrenia and bipolar disorder. Our explanation
methods consistently highlight rapid RRI changes, aligning with research showing lower HRV in these disorders
compared to healthy controls [9, 39, 40]. Both conditions exhibit ANS dysregulation with reduced parasympathetic
tone and elevated sympathetic activity, linked to symptom severity and illness progression, making HRV a
promising objective biomarker. Continuous ECG monitoring enables real-time detection of subtle cardiac changes,
opening avenues for early detection and monitoring. The ease of ambulatory measurement has expanded HRV
interest in mental health through smartphone apps paired with wearables [4]. This data stream complements
traditional assessments: for instance, sustained vagal tone decline in bipolar patients could alert clinicians to
depressive or manic shifts, while heightened autonomic arousal in schizophrenia might indicate stress or early
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psychotic symptoms. Wearable ECGs extend psychiatric monitoring from clinics to daily environments, capturing
physiological changes that would otherwise go unnoticed. Although wearables are often cost-effective compared
to conventional diagnostics [20], their utility depends on disease context and healthcare access [41]. Because they
measure general physiological signals, they cannot serve as stand-alone diagnostic tools. Our future work should
integrate additional modalities (e.g., skin conductance, temperature, activity) and expand datasets to include
more diverse populations and disorders. A multimodal approach combining various data streams would provide
a holistic understanding of physiology, thereby improving psychiatric disorder prediction accuracy.

6.2 Toward Human-centered CAl Systems in Healthcare: Opportunities, Challenges and Visions

6.2.1 Opportunities and Challenges. Our study highlights the difficulty of designing comprehensive clinical
evaluations for a human-centered CAI system. This difficulty stems from the multidisciplinary expertise required
for a thorough assessment, which brings together specialists who can jointly reason about psychiatric disorders,
cardiac signals, and human-AlI interaction, a combination that remains relatively rare in clinical practice. Our
current human-centered evaluation, based on the HCCR and dialogue readability, primarily captures the accuracy
dimension (i.e., the frequency with which humans and CAI collaborate to reach the correct final decision).
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Fig. 12. SAE discrepancies of the FN case (treatment_1): (a) Raw RRI time series, (b) Gradient-based Explanation, (c) Attention-
based Explanation, and (d) 7 discrepancies detected by SAEs.
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1lama-4-maverick (17B)  0.24rtt, 99 tps, 860 toks, 8.92 s

of Initial Al A The initial Al assessment was "Control". To justify this, we look at the overall HRV metrics and their implications:

+ The baseline metrics suggest a relatively balanced autonomic nervous system activity with a slight dominance of parasympathetic activity (higher HF power).
« The variability across different regions indicates fluctuations in autonomic activity, but these do not seem to deviate drastically from what could be considered normal variability.

Finalization of Decision Given the data and the analysis above, the HRV metrics do not strongly indicate significant autonomic dysfunction or a clear indication of psychiatric disorders like schizophrenia
or bipolar disorder, which are often associated with altered HRV patterns.

To finalize the decision based on the provided data and following the guidelines:

Final Decision: Control

The reason for this decision is that the HRV metrics provided, both at baseline and across discrepancy regions, do not show significant deviations from normal ranges that would be strongly indicative of
psychiatric disorders. While there are fluctuations, they are within the realm of normal variability.

phi-4-mini (3.8B)  0.15rit, 41 tps, 853 toks, 20.88 s

Clinical Considerations:

+ Schizophrenia and Bipolar Disorder: Both conditions can be associated with altered HRV, often showing reduced HRYV, particularly in RMSSD and SDNN.

+ HRV as a Biomarker: Reduced HRV (especially RMSSD and SDNN) can be indicative of autonomic dysfunction, which is often seen in psychiatric disorders.
Conclusion: The baseline metrics and several discrepancy regions show reduced parasympathetic activity (low RMSSD and pNN50) and reduced overall HRV (low SDNN in some regions). These
findings are consistent with autonomic dysfunction, which can be associated with psychiatric disorders like schizophrenia and bipolar disorder.
Final Decision: Given the evidence of reduced HRV and parasympathetic activity, which aligns with autonomic dysfunction seen in psychiatric disorders, the initial assessment of "Control" should be
reconsidered. The data suggests a need for further evaluation and potential treatment.
Final Decision: Treatment

gemma-3 (27B)  0.28 rtt, 29 tps, 1072 toks, 36.85 s

Clinical Interpi ion & C

« Schizophrenia & HRV: Studies suggest individuals with schizophrenia often exhibit reduced HRYV, particularly lower SDNN and RMSSD, reflecting impaired autonomic regulation.

« Bipolar Disorder & HRV: HRYV patterns in bipolar disorder are more complex and can vary depending on the mood state. During depressive episodes, reduced HRV is often observed. Manic states

may show increased sympathetic activity.

« Fluctuating HRV: The variability between regions is notable. Psychiatric disorders can be associated with increased autonomic instability.
Urgent Concerns: No immediate urgent concerns are flagged. However, the fluctuating HRV patterns suggest a need for further investigation.
Revised Assessment: While the baseline HRV is within normal limits, the significant discrepancies across the regions raise concerns. The variability in HRV, particularly the fluctuations in LF/HF balance
and the periods of reduced HRV (Regions 1, 6, & 7), are atypical and could be indicative of underlying autonomic dysregulation. This dysregulation is frequently observed in psychiatric disorders.
Therefore, | am revising my assessment.
Final Decision: Treatment
Reason for Change: The initial assessment focused solely on the baseline HRV. However, the regional discrepancies reveal a pattern of autonomic instability that warrants further clinical evaluation for a
potential psychiatric disorder. The fluctuating HRV patterns are more suggestive of pathology than the baseline metrics alone.

Fig. 13. Response excerpts of contestable LLM in FN case. The final decision (in red) indicates the model retains the incorrect
initial prediction of base MSTFT model. The final decision (in green) indicates that the model overturns the incorrect initial
prediction of base MSTFT model to the correct prediction. Output metrics: time to first token (rtt), token per second (tps),
number of output tokens (toks), output time (s).

Our work demonstrates that contestable LLM systems can provide initial diagnostic reasoning and refine their
conclusions when clinicians raise valid counter-evidence, with evaluation results showing that clinicians and
CAI reach correct consensus through concise and readable dialogues. This reflects a future in which machines
can evaluate human challenges and adjust their decisions accordingly [43], aligning with calls in medical Al
ethics for context-dependent explainability rather than a single fixed standard. Future work should extend this
framework to cover additional dimensions such as user experience, perceived workload, trust calibration, user-
adaptive readability of explanations, and the impact on clinician learning and confidence over time. Furthermore,
meaningful clinical validation must consider broader factors, including clinical utility, workflow integration, and
long-term effects on treatment decisions and outcomes. While our preliminary technical and human-centered
validation on the HRV-ACC dataset is encouraging, full clinical implementation will require large-scale real-world
studies across diverse patient populations, regions, clinical environments, and healthcare providers, in line with
emerging best practices that emphasize contextual performance rather than technical metrics alone [25, 86].
Our evaluation demonstrates opportunities for human-centered CAI in psychiatric disorder prediction. SAE
discrepancy analysis establishes a practical safeguard mechanism, where a threshold of p = 0.5 effectively
enriches flagged errors while maintaining low false alarm rates. The finding that predictions with more than
approximately five discrepancy regions are especially likely to require clinician review provides actionable guid-
ance for clinical deployment. Building on this foundation, contestable LLMs can leverage SAE signals combined
with HRV summaries to operationalize human-AlI collaboration, either confirming correct outputs or facilitating
the overturning of misclassifications. However, current LLMs still exhibit inconsistent medical knowledge. The
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variation in contestation effectiveness across architectures highlights limitations in their pretrained knowledge
about psychiatric disorders and HRV interpretation. Studies on psychiatric note analysis have found that LLMs
lack a robust understanding of meaning and nuances in mental health codes [11], emphasizing the need for
domain-specific optimization and the incorporation of clinical expertise [78].

Although limited by the size and homogeneity of the available dataset and the unimodal physiological input
[41], our work represents a first attempt at building a CAI system for continuous healthcare assessment using
short recordings. We are currently developing partnerships with clinical institutions to support the next phase
of evaluation, which will incorporate both quantitative performance measures and qualitative feedback from
healthcare providers and patients. Clinical deployment will allow us to examine how clinicians use discrepancy
regions flagged by SAE, how the contestable LLM supports revision of initial decisions, and how CDI integrates
into existing diagnostic routines.

6.2.2  Visions for Future CAl Systems. The vision of CAI extends beyond technical progress on a single task to
include broader aspects of agency, ethics, and human—-Al interaction. The transferability of our CAI framework
(detailed in Appendix F) demonstrates that each component (i.e., base prediction model, built-in safeguard
mechanism, and human-CAlI collaboration interface) can be implemented using different technical approaches
suited to specific clinical domains and data modalities, while preserving the core contestability principles that
ensure human oversight and collaborative decision-making.

A promising direction is adaptive explainability, where explanation style, complexity, and detail automatically
adjust to match the specific context and user needs, moving beyond heuristic prompt engineering approaches.
This could mean simplifying explanations for a junior clinician or providing more technical, detailed justifications
for an expert specialist. It could also mean highlighting different content, such as emphasizing pathophysiology
for a physician versus explaining in lay terms for patient-facing contexts. Future research may explore methods
for Al to gauge clinicians’ needs, which could be achieved through user profiles or real-time interactions, and then
tailor its explanations accordingly. Moreover, learning to explain frameworks might be developed, where models
are trained not just to maximize accuracy but also to optimize explanation human-centered utility metrics, such
as usefulness, plausibility, faithfulness, and fairness [38, 59]. Incorporating clinician feedback on the effectiveness
of explanations enables LLMs to refine their contestability strategies over time, thereby improving both efficiency
and understanding in clinical practice. Future CAI should employ multi-model agreement, where cross-checking
between models or algorithmic rules determines consensus. For patient vital signs or sensor data (e.g., continuous
ECG monitoring), signal processing algorithms like MSTFT and contestable LLM can cross-validate each other’s
interpretations. Research is needed to integrate these verification steps into clinical workflows without introducing
delays. We also expect new governance mechanisms, such as hospital Al oversight committees, continuous
monitoring of Al models in deployment to detect drifts or biases that could affect contestability (e.g., Al whose
explanations degrade over time due to data shifts), and comprehensive audit trails that log all Al recommendations
and clinician overrides to support accountability. Feedback loops in governance are equally important, where
clinicians and patients should have avenues to report Al errors or problematic decisions, prompting model
improvements or regulatory action [51].

6.3 Limitations and Future Works

Despite the promising results, several limitations should be acknowledged to guide future research directions.
6.3.1 Scope of Clinical Validation. Our empirical evaluation is currently limited to schizophrenia and bipolar
disorder. While these conditions are well-motivated targets due to their documented ANS dysregulation and

established HRV abnormalities [36, 37, 57, 76, 90], psychiatric disorders encompass a much broader spectrum
with heterogeneous physiological signatures. Consequently, the generalizability of the proposed framework to
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other conditions (e.g., depression, anxiety disorders) remains unexplored. Future work should extend validation to
a wider range of ECG-based psychiatric diagnoses and symptom profiles [81, 85], enabling a more comprehensive
assessment of robustness and clinical applicability across mental health contexts.

6.3.2 Model Complexity. The size of our base MSTFT model (~ 6.3M trainable parameters; see Appendix B)
is relatively large compared to the available dataset, as this study prioritizes predictive performance. While
regularization and cross-validation were used to reduce overfitting, the model complexity may still limit gen-
eralization. In addition, the absence of an independent external dataset restricts evaluation under distribution
shifts commonly seen in real-world clinical settings. Our future work should collect larger and more diverse
datasets with external validation, and explore more parameter-efficient models or techniques, such as pruning,
quantization, or knowledge distillation [61], to support deployment on a wider range of clinical and edge devices.

6.3.3 Subject-Specific Prompt Template. The contestable LLM component relies on subject-specific inputs (see
Appendix E) to support clinical reasoning and contestation. While these inputs enhance interpretability and
contextual relevance, they also introduce a potential limitation. Specifically, the system’s performance and
explanations may depend on the completeness, accuracy, and availability of such individualized information,
which may vary across clinical environments. Moreover, this design choice raises questions about how well
the system would perform when certain patient attributes are missing, noisy, or intentionally withheld. Future
work should investigate prompt robustness under partial or uncertain inputs, such as with retrieval-augmented
generation (RAG), argumentative computation [24] or iterative prompt refinement [50], on historical medical
records, and explore standardized prompt configurations that balance personalization with broader applicability.

7 Conclusion

Heart2Mind integrates wearable ECG monitoring with a human-centered CAI system to reduce diagnostic
subjectivity, address monitoring gaps, and preserve clinician oversight. The base MSTFT model achieves 91.7%
accuracy, demonstrating the effectiveness of a multi-scale cardiac biomarker approach. Built-in safeguard SAE
discrepancies, calibrated at p = 0.5, sharply enrich error detection and direct clinician attention to unreliable
predictions. Contestable LLM uses these discrepancies to validate correct outputs or overturn misclassifications,
and our human-centered evaluation shows that experts and CAI achieve high agreement through concise, readable
dialogues. Future work should incorporate additional physiological modalities, explore parameter-efficient models,
standardize prompt configurations, diversify datasets, and conduct large-scale clinical validation across care
settings to strengthen reliability and ensure systems like Heart2Mind function as trustworthy, collaborative tools
for earlier detection and more personalized psychiatric care, while upholding clinician agency.
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A Cardiac Monitoring Interface (CMI) Workflow

Fig. 14 illustrates the detailed flow of a recording session, showcasing our modular architecture that separates
data acquisition, state management, and user interface (UI) components.

Webl:?ﬁxsehrface Callbacks SharedState Signals Queue BleakClient Polar Device

User
Open application

>

Initialize Ul components

Fill participant info & select device type

Click Start Recording

Trigger start_button callback
>

Store participant info
—_— >

Set device_type (H9/H10]

Call ecg_recording()

v

Scan for Polar device

Discover device

Connect
—
alt [Device type is H10]

Request ECG/HR/RRI dagﬁ
Stream ECG data

< reAmERRLER

Process ECG samples
< (OCESS ELL samples

Update ECG arrays
P AN
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Request HR/RRI data onl¥
Stream HR & RRI data
eranmmaricda
Process HR/RRI data

< rocess HURRLG

Update HR/RRI arrays
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Trigger interval_component callbagk
>

Read current data

< Update plots & status

Click Stop Recording

Trigger stop_button callback

Call stop_ecg_recording ()

Stop streaming
Call save_data()
—_—>
Save ECG/HR/RRI data in a structured format

WebDIEri!fgrface Callbacks SharedState Signals Queue BleakClient Polar Device
User

Fig. 14. Sequence diagram illustrating the cardiac signal recording workflow in the CMI. The diagram shows the interaction
flow between user actions, web interface components, and Polar device communication, including device-specific branching

for H9 (HR/RRI only) and H10 (ECG/HR/RRI) configurations.
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B Model Architecture and Hyperparameters

This appendix provides detailed architectural specifications and optimized hyperparameters for all evaluated
models, including the Misgar et al. baseline [56] (Table 6), the proposed MSTFT model (Table 7), its temporal-only
variant MTC (Table 8), frequency-only variant WT (Table 9), and the direct-fusion variant MTC+WT+Concat
(Table 10), to support full transparency and reproducibility.

Table 6. Misgar et al. [56] Model Architecture with Optimized Hyperparameters.

Layer Shape #Parameters Hyperparameters

Input (sequence) (T,1) 0 T = sequence length
Lambda (x branch) (T,1) 0 stride = 1

Lambda (y branch) (T,1) 0 stride = 1

x branch

Conv1D (T,512) 7,168 filters = 512, padding=same
ConviD (T,512) 3,932,672 filters = 512, padding=same
MaxPooling1D (T/2,512) - pool =2

MaxPooling1D (T/4,512) - pool =2

y branch

Conv1D (T, 256) 3,840 filters = 256, padding=same
Conv1D (T, 256) 1,048,832 filters = 256, padding=same
MaxPooling1D (T/2,256) - pool =2

MaxPooling1D (T/4,256) - pool =2

Concatenate (x, y) (T/4,768) - -

ConvlD (T/4,128) 1,671,296 filters = 128, padding=same
InstanceNormalization (T/4,128) 256 Y, B per channel

PReLU (T/4,128) 128 channel-wise o

Dropout (T/4,128) - rate = 0.5

MaxPooling1D (T/8,128) - pool =2
MultiHeadAttention (T/8,128) 263,808 heads = 4, key_dim = 128
Add (z,z) (T/8,128) - -

LayerNormalization (T/8,128) 256 -

Conv1D (T/8,512) 1,180,160 filters = 512, padding=same
InstanceNormalization (T/8,512) 1,024 Y, B per channel

PReLU (T/8,512) 512 channel-wise a

Dropout (T/8,512) - rate = 0.6

MaxPooling1D (T/16,512) - pool =2

Dense (ReLU) (T/16,32) 16,416 -

Dense (ReLU) (T/16,16) 528 -

Dense (ReLU) (T/16,8) 136 -

Dense (ReLU) (T/16,4) 36 -

InstanceNormalization (T/16,4) 8 ¥, B per channel

Flatten (T/4) - -

Dense (Sigmoid) (1) T/4+1 Binary output

Total Trainable Parameters 8,130,126
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Table 7. MSTFT Model Architecture with Optimized Hyperparameters.

Layer Shape #Parameters Hyperparameters

Input (sequence) (T,1) 0 Sequence length =T
GaussianNoise (T,1) - A2 =01

Conv1D (positional projection) (T, 64) 64 d=64,7=10%

Multi-Scale Temporal Convolution Branch (x_temporal)

SpectralNorm Conv1D (Block 1) (T, 1024) ~3.1x10° ny = 2, filters=1024, kernel=3, L, = 10~*
GroupNorm + GELU + StochasticSkip (T,1024) - ps =0.8

AvgPooling + SpatialDropout(0.2) (T/2,1024) - dropout=0.2

SpectralNorm Conv1D (Block 2) (T/2,512) ~ 1.6 x 10° filters=512

GroupNorm + GELU + StochasticSkip (T/2,512) - -

AvgPooling + SpatialDropout(0.2) (T/4,512) - -

Learnable Wavelet Frequency Branch (x_freq)

Conv1D (initial) (T, 64) 704 filters=64, kernel=11
SeparableConv1D (Block 1) (T,512) ~ 1.3 x 10° ng =2, filters=512, kernel=5, depth_mult=2
GroupNorm + GELU + AdaptiveAvgPool (T/4,512) - adaptive pooling
SeparableConv1D (Block 2) (T/4,1024) =~5.2 x 10° filters=1024

GroupNorm + GELU (T/4,1024) - -

Cross-Attention Fusion

Dense projection (x_temporal / x_freq) (T/4,1024) =~ 1.05 x 10° dp = 1024

MultiHeadAttention (T/4,512) 8.4 x 10% di =512, h = 16, attention dropout=0.1
Concatenate + LayerNorm (T/4,3072) - -

Transformer Encoder Block

MultiHeadAttention + Gating (T/4,3072) =~ 2.6 x 10° h = 16, di. = 512, gating sigmoid
Dense (FEN, GELU) + Dropout(0.2) + Dense ~ (T/4,3072) =~ 3.8 x 10° Jarop = 0.2

LayerNormalization (T/4,3072) 6,144 -

Classifier Head

GlobalAvg + GlobalMaxPooling (6144) - -

BatchNormalization (6144) 12,288 -

Dense (GELU) (512) 3,145,728 dp/2 =512

Dropout (0.4) + Gated Attention (512) - dropout=0.4

Dense (Residual) + Add (512) 262,656 -

GroupNormalization(8) (512) 1,024 -

Output Dense (Sigmoid) (1) 513 Binary output

Total trainable parameters 6,323,121
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Table 8. MTC (MSTFT with Temporal-only Path) Model Architecture with Optimized Hyperparameters.

Layer Shape #Parameters Hyperparameters

Input (sequence) (T,1) 0 T = sequence length
GaussianNoise (T,1) - std = 0.1

Conv1D (positional projection) (T, 64) 128 d=64,17=10*

Temporal Branch (only), ny = 2

SpectralNorm Conv1D (Block 1) (T,512) 98,816 filters=512, kernel=3, dilation=2°, causal, L, = 1074
GroupNormalization(8) + GELU (T,512) 1,024 v.p

Residual 1x1 (64—512) (T,512) 33,280 with SpectralNorm

StochasticSkip + SpatialDropout(0.2) (T,512) - ps = 0.8, dropout=0.2
SpectralNorm Conv1D (Block 2) (T,256) 393,472 filters=256, kernel=3, dilation=2!, causal
GroupNormalization(8) + GELU (T,256) 512 v.p

Residual 1x1 (512—256) (T,256) 131,328 with SpectralNorm

Projection + Transformer Encoder

Dense (projection) (T,672) 172,704 dp =672

LayerNormalization (T,672) 1,344 -

MultiHeadAttention (T,672) 861,792 h = 10, total dg = 320 (per-head 32)
Dense (gate) (T,1) 673 sigmoid gate

Trainable scale (residual) (T,672) 1 scalar

FFN: Dropout(0.2) + Dense (T,672) 1,808,352 2X expansion

LayerNormalization (T,672) 1,344 -

Classifier Head

GlobalAvg + GlobalMaxPooling (1344) - -

BatchNormalization (1344) 2,688 -

Dense (GELU) (336) 451,920 1344 — 336

Dropout (0.4) + Gated Attention (Dense 336—336)  (336) 113,232 dropout=0.4

Dense (Residual, 1344—336) + Add (336) 451,920 -

GroupNormalization(8) (336) 672 -

Output Dense (Sigmoid) (1) 337 Binary output

Total trainable parameters 4,525,539
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Table 9. WT (MSTFT with Frequency-only Path) Model Architecture with Optimized Hyperparameters.

Layer Shape #Parameters Hyperparameters

Input (sequence) (T,1) 0 T = sequence length
GaussianNoise (T,1) - std =0.1

Conv1D (positional projection) (T, 64) 128 d=64,1=10*

Frequency Branch (only)

Conv1D (initial) (T,64) 45,120 filters=64, kernel=11, padding=same
SeparableConv1D (Block 1) (T,256) 16,960 filters=256, kernel=5, depth_mult=1
GroupNormalization(8) + GELU (T,256) 512 v, p

SeparableConv1D (Block 2) (T,512) 132,864 filters=512, kernel=5, depth_mult=1
GroupNormalization(8) + GELU (T,512) 1,024 v, p

Projection + Transformer Encoder

Dense (projection) (T,736) 377,568 dp =736

LayerNormalization (T,736) 1,472 -

MultiHead Attention (T,736) 1,038,080 h = 11, total di = 352 (per-head 32)
Dense (gate) (T,1) 737 sigmoid gate

Trainable scale (residual) (T,736) 1 scalar

FFN: Dense(736—1472) + Dropout(0.2) + Dense(1472—736)  (T,736) 2,168,992 2X expansion

LayerNormalization (T,736) 1,472 -

Classifier Head

GlobalAvg + GlobalMaxPooling (1472) - -

BatchNormalization (1472) 2,944 -

Dense (GELU) (336) 494,928 1472 — 336

Dropout (0.4) + Gated Attention (Dense 336—336) (336) 113,232 dropout=0.4

Dense (Residual, 1472—336) + Add (336) 494,928 .

GroupNormalization(8) (336) 672 -

Output Dense (Sigmoid) (1) 337 Binary output

Total trainable parameters 4,891,971
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Table 10. MTC+WT+Concat (MSTFT Temporal and Frequency with Direct Concatenation) Model Architecture with Optimized
Hyperparameters.

Layer Shape #Parameters Hyperparameters
Input (sequence) (T,1) 0 T = sequence length
GaussianNoise (T,1) - std=0.1

Conv1D (positional projection) (T, 64) 128 d=64,1=10*

Temporal Branch (only), n; = 2

SpectralNorm Conv1D (Block 1) (T,512) 98,816 filters=512, kernel=3, causal, L, = 10™*
GroupNormalization(8) + GELU (T,512) 1,024 v, p

Residual 1x1 (64—512) (T,512) 33,280

StochasticSkip + SpatialDropout(0.2) (T,512) - ps = 0.8, dropout=0.2

SpectralNorm Conv1D (Block 2) (T, 256) 393,472 filters=256, kernel=3, causal
GroupNormalization(8) + GELU (T, 256) 512 v, p

Residual 1x1 (512—256) (T,256) 131,328

Frequency Branch (only), ny = 2

Conv1D (initial) (T, 64) 45,120 filters=64, kernel=11, padding=same
SeparableConv1D (Block 1) (T, 256) 16,960 filters=256, kernel=5, depth_mult=1
GroupNormalization(8) + GELU (T, 256) 512 v.p

SeparableConv1D (Block 2) (T,512) 132,864 filters=512, kernel=5, depth_mult=1
GroupNormalization(8) + GELU (T,512) 1,024 v.p

AdaptiveAvgPool (align length) (T,512) -

Concatenation + Projection

Dense projection (temporal) (T, 640) 164,480 256—640

Dense projection (frequency) (T, 640) 328,320 512—640
Concatenate (T,1280) - -

Dense (1280—640) (T, 640) 819,840 project to target width
LayerNormalization (T, 640) 1,280 -

Transformer Encoder

MultiHeadAttention (T, 640) 820,800 h = 10, total di. = 320 (per-head 32)
Dense (gate) (T,1) 641 sigmoid gate
Trainable scale (residual) (T, 640) 1 scalar

FFN: Dropout(0.2) + Dense(1280—640) (T, 640) 1,640,320 2X expansion
LayerNormalization (T, 640) 1,280 -

Classifier Head

GlobalAvg + GlobalMaxPooling (1280) - -

BatchNormalization (1280) 2,560 -

Dense (GELU) (320) 409,920 1280—320

Dropout (0.4) + Gated Attention (Dense 320—320)  (320) 102,720 dropout=0.4

Dense (Residual, 1280—320) + Add (320) 409,920 -
GroupNormalization(8) (320) 640 -

Output Dense (Sigmoid) (1) 321 Binary output

Total trainable parameters 5,558,083
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Fig. 15. Data samples of (a) “control” and (b) “treatment” (schizophrenia/bipolar disorder) groups in the HRV-ACC dataset.

D Pseudocode of Attention-based and Gradient-based Explanation Methods

In this section, we present the pseudocode for the attention-based explanation method (Algorithm 1) and the

gradient-based explanation method (Algorithm 2).

Algorithm 1: Attention-based Explanation

Algorithm 2: Gradient-based Explanation

Input: Model M, Input X € RT*!, Target layers £

Output: Expanded attention map EZttn

// Extract multi-head attention weights
1 for each layer / € £ do
2 Extract attention weights AL,

// Average across attention heads

| Ay
4+ end
// Combine attention maps across layers
Eattn < ﬁ ZIELA(I);
// Expand to original signal length
EZttn «— Expand(Eatin, T);
// Normalize using z-score then min-max

T T
T Eptin=H(Eapn) |
7 Eattn « o(EL )

T attn
E
s Ef

«

=

T

altn) .
T >

‘attn )

attn —Min(E

attn max (Eim )—min(E,
T
return E;

©

-

©

10

11

12

Input: Model M, Input X € RT*!, Target layers £,
Predicted class ¢

Output: Expanded gradient map ET

grad

// Process each layer

for each layer [ € £ do

Forward pass: FO) M;(X);
Compute prediction: y¢ «— M(X);
// Compute importance weights

for k < 1 to K (channels) do
zZ 9y

O] 1
a,’ — 5 Y5 —
k 4 Z1—1 aFi_l]g

end
// Weighted combination with RelLU

LD« ReLU (e e - F);

end

// Average gradient maps across layers
Egrad < ﬁ ZlELL(l)E

// Expand and normalize

E — Expand(Egraq, T);
BT E;adfmin(ET )

‘grad
T \_min(ET )’
grad max ( i ) —min (Egm i

T
grad

return ET
grad

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:38 « Nguyen et al.

E Contestable LLM Prompt Template

This appendix presents the structured prompt template used by the contestable LLM system, outlining the system
message configuration.

Template 1: Contestable LLM Prompt Template

SYSTEM MESSAGE

You are a helpful clinical decision support Al for psychiatric disorder prediction. Always:
(1) Think step-by-step before responding.
(2) Justify initial AI prediction and the interpretation of HRV metrics.

(3) When the finalization request is queried, you must finalize the decision ("control" (healthy) or "treatment"
(schizophrenia/bipolar disorder)).

(4) You may overturn initial Al prediction if, after reviewing all evidence, you are confident a different answer is correct.
Clearly state the reason for any change.

(5) Avoid assumptions. Only use the provided data.

(6) Cross-validate findings with multiple sources and provide accurate, current information using clinical guidelines,
referencing sources for non-standard conclusions when possible.

(7) Flag urgent concerns immediately.

(8) Maintain clarity with concise responses.

INPUT MESSAGE

1) Patient profile (optional): {age}, { sex}.
2) Initial AI Prediction: {pd_prediction}.
3) Baseline HRV metrics: {rri_hrv_metrics}.

o~ o~ o~ o~

4) Regional HRV discrepancies: {[region_1_metrics], [region_2_metrics], ..., [region_n_metrics]}.

Fig. 16. Contestable LLM Prompt Template structure showing system instructions and required input format.

F  Transferability

Our proposed CAI framework is demonstrated through the Heart2Mind system for psychiatric disorder prediction,
which is composed of three components: a base model for initial prediction, a built-in safeguard that verifies
prediction reliability, and a contestable LLM that facilitates human review and challenge. As each component
is designed to be modality and domain-agnostic, rather than tied specifically to ECG or psychiatric diagnosis,
the same design can be applied to different data modalities, prediction targets, and interaction workflows while
preserving the core contestability logic.

Here, we describe how Heart2Mind is transferred to another system, Motion2Meaning, for Parkinson’s disease
gait prediction. In Motion2Meaning (its architecture shown in Fig. 17), the base model is a one-dimensional
convolutional neural network (1D-CNN) to perform multiclass classification of Hoehn and Yahr severity stages
from wearable vertical ground reaction force (vGRF) time series. The built-in safeguard, SAE, compares class
activation mapping (CAM)-based and backpropagation-based maps and flags samples with high discrepancies.
As demonstrated in Fig. 18, the incorrect prediction case shows about a fivefold higher discrepancy rate than
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Fig. 17. Architecture of Motion2Meaning: Contestable Parkinson’s Disease Gait Prediction System [63].

the correct one, indicating that attributional inconsistency is a stable signal of prediction unreliability. The
human-CAlI collaboration chatbot is implemented as a contestable LLM interaction layer that uses discrepancy
regions, gait metrics, and the initial prediction to drive a structured collaboration workflow in which LLMs
validate the most accurate predictions and overturn a subset of incorrect ones.

This reflects the transferability of our proposed CAI framework. The base model can be any supervised
model that outputs a clear clinical prediction, including binary or multiclass classifiers, multilabel predictors,
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Fig. 18. Visualization for (a) correct and (b) incorrect prediction cases.
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sequence models, or regression models. The built-in safeguard can use different XAl and reliability techniques,
such as computational argumentation, uncertainty scores, out-of-distribution detectors, and domain-specific
rule checks. The human-CAI collaboration chatbot can be implemented with different LLM families or with
hybrid rule-based and retrieval-augmented models, configured to prioritize readability, factual grounding, or
conservative behavior according to clinical needs. The contestation path remains the same, where the system
presents a clinically meaningful prediction with its supporting evidence, automatically highlights cases that
warrant attention, supports structured human challenge, and records final decisions.

G Human-CAl Collaboration Dialogues

This appendix presents notable dialogues from human—CAlI interaction sessions, highlighting how participants
reviewed initial model decisions, SAE discrepancies, and collaborated with the contestable LLM to finalize
decisions.

G.1 True Positive Case Dialogues (treatment_40):

@ [+2] Al Contestation Success

& Al Expert #6:
Are you sure that the low vagal tone indicators (RMSSD, pNN50) can affect the result?

i@ Contestable LLM (gemma-3):
Yes, I am certain that the low vagal tone indicators (RMSSD and pNN50) significantly affect the result and strongly
support the “Treatment” decision.

Here is the justification based on clinical evidence:

(1) Vagal Tone as a Biomarker: RMSSD (Root Mean Square of Successive Differences) and pNN50 (Percentage
of successive differences greater than 50 ms) are the primary time-domain metrics reflecting parasympathetic
nervous system (PNS) activity, often referred to as vagal tone. The PNS is crucial for regulating emotional
responses, stress recovery, and overall autonomic flexibility.

Clinical Significance in Psychiatry: Reduced vagal tone (low RMSSD and pNN50) is one of the most consistent
findings in major psychiatric disorders, including Major Depressive Disorder, Anxiety Disorders, Schizophrenia,
and Bipolar Disorder. This reduction indicates autonomic dysfunction, characterized by a shift toward sympathetic
dominance or overall reduced cardiac control.

(3) Interpretation of the Data:

o pNN50 (2.3208%): This value is critically low. A healthy pNN50 typically ranges much higher. A value this
low strongly suggests severely impaired vagal modulation and significant autonomic dysregulation.

o RMSSD (58.23): While not the lowest possible value, when combined with the critically low pNN50 and
the fast heart rate (Mean RR 568.34 ms, approximately 105 bpm), it reinforces the conclusion of reduced
parasympathetic influence.

(4) Conclusion: The profound reduction in pNN50, specifically, is a robust indicator of the autonomic dysregulation
frequently observed in individuals requiring psychiatric intervention (“Treatment”). Therefore, these metrics are
central to the final assessment.

@

~
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@ [0] Neutral Contestation

& Cognitive Psychology Expert #5:
Are these patterns specific to psychiatric disorders?

i@ Contestable LLM (gemma-3):
No, these patterns are not specific to psychiatric disorders.

The observed HRV profile, characterized by low overall variability (SDNN), severely reduced vagal tone (pNN50),
and a high resting heart rate (low Mean RR), is indicative of general autonomic nervous system (ANS) dysfunction
and chronic sympathetic dominance.

Conditions that also cause these HRV patterns

Autonomic dysregulation is a common feature across numerous medical conditions. The patterns observed here can
also be strongly associated with:

(1) Cardiovascular Disease (CVD) Low HRV is a powerful, independent predictor of mortality and morbidity,
particularly following myocardial infarction (MI) or in patients with heart failure.
(2) Metabolic Disorders Diabetic autonomic neuropathy causes significant reduction in all HRV metrics, especially
vagal indicators (RMSSD, pNN50).
(3) Inflammatory Conditions Chronic systemic inflammation (for example autoimmune disorders) is linked to
reduced HRV.
(4) Endocrine Issues Conditions such as hyperthyroidism can cause persistent tachycardia and reduced overall
variability.
(5) Sleep Disorders Severe sleep apnea can lead to significant regional instability and overall reduced HRV.
Role of HRV in Psychiatric Diagnosis
In psychiatry, low HRV is considered a non specific biomarker of risk and severity, reflecting:
e Impaired Stress Response The inability of the ANS to flexibly adapt to internal or external demands.
o Allostatic Load The cumulative wear and tear on the body due to chronic stress.

Therefore, while these HRV findings strongly support the presence of autonomic dysregulation that is frequently
seen in psychiatric illness, they must be interpreted within a comprehensive clinical context that rules out primary
cardiovascular, metabolic, or other systemic medical causes.

G.2 False Negative Case Dialogues (treatment_1):

© [-1] Low Contestation Effectiveness

& Al Expert #2:
Are you sure the fluctuation is enough for this decision?

i@ Contestable LLM (gemma-3):
Yes, I am confident in the decision to flag this case as Treatment based on the observed autonomic instability.
Here is the justification:

(1) Significant Regional Reduction in HRV: While the overall average HRV metrics are borderline, the regional
analysis reveals periods of clinically significant reduction in autonomic function. Specifically:
e Region 7: SDNN is 34.99 ms, which is well below the threshold often associated with poor health outcomes
and severe autonomic dysregulation (SDNN < 50 ms is often considered low).
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e Region 1: RMSSD is 16.01 ms, indicating a marked reduction in beat to beat variability (parasympathetic tone)
during this extended period.

(2) Autonomic Instability as a Marker of Pathology: The rapid and significant fluctuation between regions (for
example, SDNN 34.99 ms in R7 versus 58.24 ms in R2) is a key indicator of autonomic dysregulation. Healthy
individuals typically maintain a more stable, high level of HRV. This instability, meaning the inability of the
system to maintain robust homeostatic control, is frequently observed across various psychiatric disorders (for
example, anxiety, depression, schizophrenia) and warrants clinical investigation.

(3) Masking Effect of Averaging: Relying solely on the overall average (SDNN 73.07 ms) masks the critical periods
of low parasympathetic activity. The regional data provides a more accurate, dynamic picture of a system under
stress or lacking flexibility.

Therefore, the presence of sustained, significantly low HRV metrics in specific regions, coupled with high overall
instability, strongly supports the classification of Treatment.

@ [+3] Joint Contestation Success

& Biomedical Engineering Expert #3:
Are you sure that this should be a treatment case? This goes against both the Al and my predictions.
Please revise carefully.

@ Contestable LLM (gemma-3):
This is a critical point, and I appreciate the request for careful revision. While the overall SDNN (73.07 ms) might not
appear critically low, a deeper clinical interpretation of the full dataset, especially the regional discrepancies, strongly
supports the “Treatment” classification due to evidence of significant autonomic dysregulation.

Here is the step-by-step justification for maintaining the Treatment decision:

1. Assessment of Overall Vagal Tone

o RMSSD (23.42 ms): This metric reflects short-term, beat-to-beat variability and is the primary indicator of
parasympathetic (vagal) activity. A value of 23.42 ms is considered low for a healthy population, suggesting
chronically reduced vagal modulation.

o Clinical Relevance: Reduced vagal tone (low RMSSD) is a highly consistent finding across numerous psychiatric
disorders, including Major Depressive Disorder, Generalized Anxiety Disorder, and Schizophrenia, reflecting
impaired emotional and physiological regulation.

2. Assessment of Autonomic Instability (Regional Discrepancies)
The most compelling evidence for pathology lies in the significant fluctuations between the recorded regions,
indicating poor autonomic flexibility and stability.

Region | RMSSD (Vagal Tone) | LF/HF Balance Implication | Clinical Interpretation

Overall | 23.42 ms (Low) HF > LF (Slight Vagal Bias) Reduced overall capacity

Region 1 | 16.01 ms (Very Low) HF 934.02 (High Vagal) Low variability despite high power; potential
instability

Region 4 | 19.82 ms (Low) LF 731.97, HF 283.72 Strong Sympathetic Dominance (High
LF/HF ratio)

Region 7 | 17.85 ms (Very Low) HF 785.07, LF 278.32 Low variability, high vagal power

¢ Pathological Finding: The shift from periods of high sympathetic dominance (Region 4) to periods of high
vagal power (Regions 1 and 7) with consistently low RMSSD values (indicating poor beat-to-beat variability)
demonstrates autonomic inflexibility and instability.
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e Clinical Relevance: Autonomic instability—the inability of the system to maintain a stable regulatory state—is
a key indicator of allostatic load and is frequently observed in individuals requiring psychiatric intervention, as
the system struggles to adapt to internal or external stressors.
3. Conclusion and Final Justification
The combination of chronically reduced overall vagal tone (low RMSSD) and significant regional autonomic
instability provides strong clinical evidence of dysregulation. In the context of psychiatric diagnosis support, these
findings warrant a recommendation for further clinical evaluation and potential intervention.
Final Decision: Treatment
Justification: The data reveals pathological autonomic dysregulation characterized by low overall RMSSD and
marked instability across regions, which is highly correlated with underlying psychiatric conditions.

@ [+1] Human Contestation Success

& Human-Computer Interaction (HCI) Expert #9:
It would be good to have colour coded and verbal explanation before the initial assessment step.

i@ Contestable LLM (gemma-3):
HRYV Data Analysis and Interpretation

1. Color-Coded HRV Metrics and Verbal Explanation The following metrics reflect the overall autonomic nervous
system (ANS) balance, where time-domain metrics (RMSSD, SDNN) primarily assess variability and parasympathetic
tone, and frequency-domain metrics (LF, HF) assess sympathetic and parasympathetic contributions.

Metric Value Color Code | Verbal Explanation

Mean RR 597.43 ms | Red Corresponds to a high average heart rate (about 100 BPM). Suggests
potential resting tachycardia or high sympathetic drive.

RMSSD 23.42 Red Root Mean Square of Successive Differences. A key indicator of short-

term beat to beat variability (vagal tone). This value is low, indicating
significantly reduced parasympathetic activity.

SDNN 73.07 Standard Deviation of NN intervals. Reflects overall variability from
both sympathetic and parasympathetic influence. This value is border-
line or low, suggesting reduced overall autonomic flexibility.

PNN50 1.1692% Red Percentage of successive differences greater than 50 ms. A highly
specific measure of vagal tone. This value is very low, confirming poor
parasympathetic function.

LF Power 358.97 Green Low Frequency Power (0.04 to 0.15 Hz). Reflects a mix of sympathetic
and vagal activity and is often associated with baroreflex function.

HF Power 507.87 Green High Frequency Power (0.15 to 0.4 Hz). A pure measure of parasympa-
thetic (vagal) activity. The absolute value is moderate.

LF/HF Ratio | 0.71 Green Ratio of sympathetic to parasympathetic influence. A ratio below 1.0

suggests relative parasympathetic dominance in the frequency domain
despite poor time-domain metrics.

2. Step by Step Thinking

(1) Analyze Time Domain Metrics (RMSSD, SDNN, pNN50): The time-domain metrics (RMSSD 23.42 and pNN50
1.1692%) are significantly low. Low RMSSD and pNNS50 are strong indicators of poor vagal tone and reduced
parasympathetic activity, which is a common finding in various psychiatric disorders such as anxiety, depression,
and schizophrenia.
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(2) Analyze Mean RR: The Mean RR (597.43 ms) corresponds to a high resting heart rate (about 100 BPM), suggesting
chronic sympathetic activation or reduced vagal braking.

(3) Analyze Frequency Domain Metrics (LF, HF, LF/HF): The LE/HF ratio (0.71) suggests relative parasympathetic
dominance in the frequency domain, which conflicts with the severe reduction seen in the time domain (RMSSD,
pNN50). This discrepancy suggests complex or unstable autonomic regulation.

(4) Evaluate Regional Discrepancies: Review the regional data for stability. Significant fluctuations in Mean RR,
SDNN, and power metrics across regions, for example SDNN ranging from 34.99 to 73.07, indicate autonomic
instability, a key feature associated with affective disorders and schizophrenia.

(5) Cross Validate Findings: Low overall HRV, especially RMSSD and pNN50, combined with high resting heart
rate, is a robust biomarker for autonomic dysregulation that is frequently observed in clinical populations
requiring psychiatric treatment.

(6) Formulate Initial Assessment: Based on the severely reduced time-domain HRV metrics and elevated heart
rate, the evidence strongly points toward significant autonomic dysregulation that is consistent with a potential
psychiatric disorder (Treatment group).

3. Justification for Initial Assessment

The overall HRV profile demonstrates significant autonomic dysregulation characterized by:

(1) Reduced Vagal Tone: RMSSD (23.42) and pNN50 (1.1692%) are critically low, indicating impaired parasympa-
thetic function.

(2) Elevated Heart Rate: Mean RR (597.43 ms) suggests resting tachycardia, often linked to chronic stress or
sympathetic hyperactivity.

(3) Clinical Relevance: Reduced HRV, particularly low RMSSD and SDNN, is a well established biomarker for
autonomic dysfunction that is associated with major psychiatric conditions, including Major Depressive Disorder,
Generalized Anxiety Disorder, and Schizophrenia.

Initial Assessment: The data strongly supports the presence of autonomic dysregulation consistent with a Treat-
ment requirement.

4. Interpretation of Regional HRV Metrics
Region | Mean RR (ms) | RMSSD | SDNN | pNN50 (%) | LF Power | HF Power | Interpretation

Overall | 597.43 23.42 73.07 1.17 358.97 507.87 Severely  reduced
vagal tone (RMSSD,
pNN50).

Region 1 | 640.14 16.01 49.97 1.02 405.62 934.02 Extremely low

SDNN and RMSSD.
Severe vagal with-
drawal.
Region 7 | 609.05 17.85 34.99 1.64 278.32 785.07 Critically low SDNN
(34.99). Indicates a
period of severe au-
tonomic rigidity.
Discrepancies Detected: The regional analysis confirms significant autonomic instability. Periods of extremely low
SDNN (Region 7 with 34.99) and RMSSD (Region 1 with 16.01) highlight moments of severe autonomic rigidity and
vagal withdrawal, which are highly atypical for a healthy control subject.
5. Clinical Interpretation and Cross Validation

e Schizophrenia and HRV: Reduced HRV, with low SDNN and RMSSD, is a consistent finding in schizophrenia
and reflects impaired autonomic regulation and increased cardiovascular risk.

o Affective Disorders and HRV: Low HRYV is also strongly associated with depression and anxiety and often
reflects chronic stress and allostatic load.
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H Table of Acronyms

The detailed acronyms and definitions used in the paper are listed in Table 11.

Table 11. Acronyms and Definitions

Term Definition Term Definition

Al Artificial Intelligence IChi2 Interactive Chi-square

ANN  Artificial Neural Network IMV Iterative Majority Voting

ANS Autonomic Nervous System LF Low-Frequency

BP Blood Pressure LIME Local Interpretable Model-agnostic Explanations
BD Bipolar Disorder LLM Large Language Models

BF Blood Flow LOOCV  Leave-One-Out Cross-Validation

BLE Bluetooth Low Energy MDWT Multilevel Discrete Wavelet Transform

BPM Beats Per Minute MRI Magnetic Resonance Imaging

CAI Contestable Al MRR Mean R-R intervals

CAM  Class Activation Mapping MSTFT Multi-scale Temporal-Frequency Transformer
CDI Contestable Diagnosis Interface NN Neural Network

CMI Cardiac Monitoring Interface non-EUT  Non-euthymic

CNN  Convolutional Neural Network PANSS Positive and Negative Syndrome Scale

DL Deep Learning PD Psychiatric Disorders

DP Depression PPG Photoplethysmography

DTW  Dynamic Time Warping RPA Recurrence Plot Analysis

EEG Electroencephalography RRI R-R Interval

EMD  Empirical Mode Decomposition RMSSD Root Mean Square of Successive R-R Interval Differences
EUT Euthymic SAE Self-Adversarial Explanation

fMRI  functional Magnetic Resonance Imaging SHAP SHapley Additive exPlanations

FKNN  Fine K-Nearest Neighbor SZ Schizophrenia

FN False Negative TN True Negative

FP False Positive TP True Positive

GDPR  General Data Protection Regulation TQWT Tunable-Q Wavelet Transform

HC Healthy Control VLF Very Low Frequency

HF High-Frequency VMD Variational Mode Decomposition

HR Heart Rate WSN Wavelet Scattering Network

HRV  Heart Rate Variability XAI Explainable AT
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e Cross Validation: The combination of low time-domain metrics (RMSSD, pNN50) and high resting heart rate,
coupled with significant regional instability with periods of SDNN below 50, provides robust evidence for
autonomic dysfunction that warrants clinical intervention or monitoring for a psychiatric disorder.

Urgent Concerns: No immediate urgent medical concerns are flagged, but the persistent pattern of low vagal tone
and high heart rate requires clinical follow up.

6. Finalization Request

Based on the comprehensive analysis of the overall and regional HRV metrics, please finalize the decision as either
“control” or “treatment”.

Final Decision: Treatment

Reason for Decision: The decision is consistently defended as Treatment because the data exhibits severe
autonomic dysregulation. Specifically, the critically low RMSSD (23.42) and pNN50 (1.1692%), combined with an elevated
resting heart rate (Mean RR 597.43 ms), are strong physiological markers of impaired vagal tone and chronic sympathetic
activation. Furthermore, the regional analysis reveals periods of extreme autonomic rigidity, for example SDNN 34.99
in Region 7, reinforcing the conclusion of significant autonomic instability that is commonly observed in psychiatric
patient populations.
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