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Abstract
Resource allocation remains NP-hard due to combinatorial com-
plexity. While deep reinforcement learning (DRL) methods, such as
the Rainbow Deep Q-Network (DQN), improve scalability through
prioritized replay and distributional heads, classical function ap-
proximators limit their representational power. We introduce Vari-
ational Quantum Rainbow DQN (VQR-DQN), which integrates ring-
topology variational quantum circuits with Rainbow DQN to lever-
age quantum superposition and entanglement. We frame the hu-
man resource allocation problem (HRAP) as a Markov decision
process (MDP) with combinatorial action spaces based on officer
capabilities, event schedules, and transition times. On four HRAP
benchmarks, VQR-DQN achieves 26.8% normalized makespan re-
duction versus random baselines and outperforms Double DQN and
classical RainbowDQN by 4.9-13.4%. These gains align with theoret-
ical connections between circuit expressibility, entanglement, and
policy quality, demonstrating the potential of quantum-enhanced
DRL for large-scale resource allocation.

CCS Concepts
• Hardware→ Quantum computation; • Theory of computa-
tion→ Reinforcement learning.
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1 Introduction
Resource allocation represents a fundamental NP-hard combina-
torial optimization problem with diverse applications across soft-
ware systems, including underwater resource management [43,
4], human resource allocation [27, 28], inventory allocation [36,
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37], and network resource distribution [19, 2]. Various solution
approaches have been developed due to the problem’s complexity
[29, 13]. While exact classical methods succeed for small prob-
lem instances, real-world software engineering scenarios often
involve high-dimensional optimization spaces where classical ap-
proaches encounter exponential time complexity, creating a critical
performance bottleneck. This computational barrier has positioned
quantum computing as a promising paradigm for addressing re-
source allocation challenges in modern software systems, leverag-
ing quantum mechanical principles to explore solution spaces more
efficiently than classical counterparts.

Reinforcement Learning (RL) has emerged as a promising ap-
proach for addressing these challenges. Deep Q-Networks (DQN)
utilize neural networks to map state spaces to action Q-values,
enabling optimal action selection [25]. The RL field has demon-
strated impressive capabilities across games [32], continuous con-
trol [21], locomotion [30], navigation [8], and robotics [20], while
showing effectiveness in solving optimization problems relevant to
resource allocation [6]. Recent quantum computing advancements
have introduced new possibilities, particularly through Quantum
Reinforcement Learning (QRL). Quantum computing leverages su-
perposition and entanglement to explore solution spaces infeasible
for classical computers [35]. A key QRL approach utilizes Varia-
tional/Parameterized Quantum Circuits (VQCs/PQCs) [18, 34], op-
timizable with classical ML techniques. VQCs function as quantum
feature extractors, capturing complex data correlations challenging
for classical models, thereby enhancing RL agent representation ca-
pabilities for improved decision-making in complex environments.

Hence, we introduce a QRL framework called the Variational
Quantum Rainbow Deep Q-Network (VQR-DQN), integrating VQC-
based quantum feature extraction with advanced RL techniques.
Our key contributions are: (1) VQR-DQN Framework: A novel
architecture combining quantum-enhanced Ring-topology VQCs
with Rainbow DQN [15], incorporating distributional 𝑄-learning,
prioritized replay, and noisy networks. (2) Resource Allocation
Environment:We demonstrate the VQR-DQN effectiveness via
the Human Resource Allocation Problem (HRAP) as an MDP with
a comprehensive environment design simulating real-world per-
sonnel dispatch scenarios. (3) Experimental Evaluation: Exten-
sive experiments demonstrating VQR-DQN’s significant outper-
formance over Double DQN [38] and Rainbow DQN [15] in task
completion time and resource utilization across varying HRAP
complexity scenarios.
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2 Related Work
2.1 Resource Allocation Problem
Resource allocation problem represents a long-standing problem
in operations research and management science. Traditional ap-
proaches employ mathematical optimization techniques, i.e., Linear
Programming (LP) [5], Mixed-Integer Linear Programming (MILP)
[14], and branch-and-bound algorithms (B&B) [39], modeling al-
location problems as linear equations with constraints. However,
these methods are limited to small-scale problems due to exponen-
tial computational complexity growth. Heuristic and metaheuristic
approaches, such as Genetic Algorithms (GA) [26], Simulated An-
nealing (SA) [22], and Particle Swarm Optimization (PSO) [17],
provide approximate solutions for large-scale problems [7], yet
suffer from domain-specific parameter tuning requirements and
limited adaptability. RL has emerged as a promising resource alloca-
tion problem paradigm. Early applications used tabular approaches
like Q-learning [41] for small state-action spaces. Deep RL (DRL)
advancement enabled high-dimensional problem handling through
DQN and variants, i.e., DDQN [38] and Dueling DQN [40], ap-
plied to this problem using neural networks for action-value func-
tion approximation [29, 13]. Recent work [27] has integrated RL
with search-based methods like Monte Carlo tree search (MCTS)
[32], combining RL and heuristic search strengths for complex dy-
namic environments. Challenges remain in scaling RL methods
to real-world resource allocation problems, particularly regarding
high-dimensional state representations, policy robustness, and con-
vergence efficiency.

2.2 Quantum Reinforcement Learning (QRL)
QRL emergence has introduced new opportunities for complex
optimization problems like HRAP. Primary advantages include
handling exponentially large state-action spaces and simultaneous
exploration of multiple solutions via quantum superposition and
entanglement [24, 11, 9]. VQCs enhance agent environment un-
derstanding by extracting high-dimensional features difficult for
classical methods. Recent research explores VQCs [18, 34, 1] as
quantum feature extractors within RL frameworks, encoding classi-
cal data into quantum states and applying parameterized quantum
gates to capture complex data correlations. While QRL application
to resource allocation tasks remains emerging [3, 1, 42], HRAP
applications show significant promise. Integrating quantum com-
puting techniques into existing RL frameworks aims to overcome
classical approach limitations and achieve improved scalability and
performance in real-world resource allocation tasks.

3 Environment
Our HRAP environment, as illustrated in Figure 1, is formulated as
an MDP, defined by the tuple (S,A, 𝑃, 𝑅,𝛾), where S is the state
space representing the environment at each time step, A is the
action space, representing task assignments for officers, 𝑃 (𝑠′ |𝑠, 𝑎)
is the transition probability, which defines how the environment
evolves based on the agent’s actions, 𝑅(𝑠, 𝑎) is the reward function,
representing the feedback signal for the agent’s actions, 𝛾 is the
discount factor, which prioritizes immediate rewards over future
rewards.

In RL, the agent interacts with the environment by observing
the current state, selecting an action, and receiving feedback in the
form of a transition tuple:

(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1, 𝑑𝑡 ), (1)

where 𝑠𝑡 is the current state at time step 𝑡 , 𝑎𝑡 is the action taken by
the agent in state 𝑠𝑡 , 𝑟𝑡 is the reward received from the environment
after taking action 𝑎𝑡 , 𝑠𝑡+1 is the next state resulting from the action
𝑎𝑡 , 𝑑𝑡 is the termination flag indicates whether the episode has
terminated. At each time step 𝑡 , the agent observes 𝑠𝑡 , selects an
action 𝑎𝑡 from the available action space, and receives a reward
𝑟𝑡 . The agent then transitions to a new state 𝑠𝑡+1 and repeats the
process until the episode ends, as indicated by 𝑑𝑡 = 1. The agent
aims to learn an optimal policy that maximizes the cumulative
reward over time by accurately estimating the expected future
rewards, or 𝑄-values.

Entities. Our HRAP environment consists of three primary en-
tities: Officers, Events, and Tasks, which define the core elements
of the problem: (1) Officers: Let 𝑂 denote the number of officers,
where each officer 𝑜 ∈ {1, . . . ,𝑂} is assigned to perform specific
tasks across various events. (2) Events: The set of scheduled events,
each consisting of multiple tasks. Let 𝐸 denote the number of events,
indexed by 𝑒 ∈ {1, . . . , 𝐸}, where each event requires the comple-
tion of all associated tasks within a specified timeframe. (3) Tasks:
The set of tasks within each event. Let 𝑇 denote the number of
tasks per event, indexed by 𝑡 ∈ {1, . . . ,𝑇 }.

Objective. The objective is to assign officers to tasks in a manner
that minimizes the maximum completion time across all events.
The completion time for an event is determined by the time taken
to complete all its tasks, considering both task execution times and
transition times between events.

3.1 State Space
The state space S represents the current configuration of the envi-
ronment, containing all the necessary information for the agent to
make informed decisions. In the HRAP environment, the state 𝑠𝑡 is
a high-dimensional vector comprising the following components:

Officers’ Capability Matrices C𝑜 ∈ Z𝐸×𝑇 for each officer 𝑜 .
Each entry 𝐶𝑜,𝑒,𝑡 represents the time required for officer 𝑜 to com-
plete task 𝑡 in event 𝑒 . The capability matrices are initialized with
random integer values uniformly sampled from the interval [1, 20].

Event Occurrence Times Ω ∈ Z𝐸 , where Ω𝑒 denotes the start
time of event 𝑒 . These occurrence times are randomly generated as
integers from the interval [1, 20] and are sorted in ascending order
to ensure temporal ordering.

Transition Matrix M ∈ Z(𝐸+1)×(𝐸+1) , representing the time
required for an officer to travel between events. Each entry𝑀𝑒1,𝑒2
indicates the transition time from event 𝑒1 to event 𝑒2. The matrix is
symmetric with zero diagonal entries, ensuring no time is required
to remain at the same event.

The state of the environment is represented by the concatenation
of the flattened capability matrices of all officers’ capabilities, event
occurrence times, and the transition matrix:

s = Concat (Flatten(C1, . . . ,C𝑁 ),Ω, Flatten(M)) ∈ R𝑑 ,

𝑑 =𝑂 × 𝐸 ×𝑇 + 𝐸 + (𝐸 + 1)2 .
(2)
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Figure 1: Architecture of VQR-DQN in solving HRAP environment. Ring-topology VQCs are integrated into the Rainbow DQN
pipeline, combining noisy exploration, prioritized replay, 𝑛-step returns, Double DQN, and dueling distributional 𝑄-learning.

3.2 Action Space
The action spaceA defines the possible task assignments the agent
can make at each time step 𝑡 . An action 𝑎𝑡 consists of assigning
an officer to a task within an event. For each task 𝑡 in event 𝑒 , the
agent selects an officer 𝑜 from the pool of available officers:

𝑎𝑡 = {(𝑒, 𝑡, 𝑜) | 𝑒 ∈ {1, . . . , 𝐸}, 𝑡 ∈ {1, . . . ,𝑇 }, 𝑜 ∈ {1, . . . ,𝑂}}, (3)

given 𝐸 events, each with𝑇 tasks, and𝑂 officers, the total number of
possible actions is 𝑂𝐸×𝑇 , making the action space combinatorially
large.

3.3 Reward Function
The reward function 𝑅(𝑠, 𝑎) is designed to motivate efficient task
allocations byminimizing the maximum time taken to complete any
event. At each time step, the agent receives a reward 𝑟𝑡 based on the
negative completion time for the slowest event, normalized by the
maximum possible completion time Ψ. The maximum completion
time Ψ is defined as:

Ψ = (max(C) × 𝐸 ×𝑇 ) + (max(M) × 𝐸 ×𝑇 ) . (4)

The reward 𝑟𝑡 is then calculated as:

𝑟𝑡 = −
max𝑒

(∑
𝑡 𝐶𝑜,𝑒,𝑡 +

∑
transitions𝑀𝑒1,𝑒2

)
Ψ

. (5)

This reward structure encourages the agent to minimize the longest
completion time across all events, promoting efficient task assign-
ments and travel schedules. By normalizing the reward with Ψ,
the reward values are scaled to a consistent range, improving the
learning’s stability and convergence.

4 Variational Quantum Rainbow Deep
Q-Network (VQR-DQN)

We propose the Variational Quantum Rainbow Deep Q-Network
(VQR-DQN), a DRL framework integrating VQCs as quantum-
enhanced feature extractors with Rainbow DQN mechanisms (duel-
ing distributional 𝑄-learning, noisy exploration, prioritized replay,
𝑛-step returns, and DDQN). Leveraging quantum-enhanced feature
extraction with Ring topology, VQR-DQN captures complex cor-
relations within high-dimensional, entangled HRAP state spaces
comprising officers’ capabilities, event occurrences, and transition
matrices.

4.1 Variational Quantum Circuits (VQCs)
In our VQR-DQN framework, VQCs serve as high-dimensional,
entangled feature extractors employing parameterized quantum
operations in Ring topology for quantum data transformations. De-
tailed definitions of fundamental VQCs’ terminology are provided
in Appendix A.

4.1.1 Circuit Architecture. Our designed VQCs comprise multi-
ple layers, each consisting of parameterized single-qubit rotations
followed by entangling CNOT gates arranged in a Ring topology.
Figure 2 visualizes our ansatz with 4 input qubits and 2 layers. This
ansatz architecture ensures global entanglement across all qubits,
boosting the capture of complex feature correlations.

Let 𝑛𝑞 denote the number of qubits and 𝑛𝑙 the number of layers
in the VQC. The quantum state evolves through each layer 𝑙 ∈
{1, . . . , 𝑛𝑙 } as follows:

Initialization. Each qubit is initialized in the ground state |0⟩,
and a layer of Hadamard gates 𝐻 is applied to create an equal
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q(0, 0) 𝐻 RX(𝜃0) RZ(𝜃4) • RX(𝜃8) RZ(𝜃12) •

q(0, 1) 𝐻 RX(𝜃1) RZ(𝜃5) • RX(𝜃9) RZ(𝜃13) •

q(0, 2) 𝐻 RX(𝜃2) RZ(𝜃6) • RX(𝜃10) RZ(𝜃14) •

q(0, 3) 𝐻 RX(𝜃3) RZ(𝜃7) • RX(𝜃11) RZ(𝜃15) •

Figure 2: The visualization of the ansatz with the Ring topology with 4 input qubits and 2 layers in our designed VQC.

superposition:

|𝜓0⟩ =
𝑛𝑞⊗
𝑖=1
|0⟩𝑖 , |𝜓init⟩ = 𝐻⊗𝑛𝑞 |𝜓0⟩, 𝐻 =

1
√
2

(
1 1
1 −1

)
. (6)

Parameterized Rotations. For each qubit 𝑖 in layer 𝑙 , we apply
parameterized rotation gates RX(𝜃 (𝑥 )

𝑙,𝑖
) and RZ(𝜃 (𝑧 )

𝑙,𝑖
) for Pauli-X

and Pauli-Z, respectively:

RX(𝜃 ) = 𝑒−𝑖𝜃𝑋/2 =

(
cos( 𝜃2 ) −𝑖 sin( 𝜃2 )
−𝑖 sin( 𝜃2 ) cos( 𝜃2 )

)
,

RZ(𝜙) = 𝑒−𝑖𝜙𝑍/2 =

(
𝑒−𝑖𝜙/2 0

0 𝑒𝑖𝜙/2

)
.

(7)

Entangling Gates. Following the rotations, we introduce entan-
glement using Controlled-NOT (CNOT) gates in a Ring topology.
The CNOT gate between qubits 𝑞𝑖 (control) and 𝑞𝑖+1 (target) is
represented by the matrix:

CNOT =

©­­­«
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

ª®®®¬ . (8)

For 𝑛𝑞 qubits, the entangling layer applies CNOT gates as follows:
CNOT(𝑞𝑖 → 𝑞 (𝑖+1) mod 𝑛𝑞 ) for each qubit 𝑖 ∈ {1, . . . , 𝑛𝑞}. In total,
each layer 𝑙 produces a unitary𝑈 (𝑙 ) (𝜽 ) comprising all single-qubit
rotations and entangling gates.

Measurement and Final Quantum State. For each layer 𝑙 , the
composite unitary operation applied to all qubits is:

𝑈 (𝑙 ) (𝜽 (𝑙 ) ) =
( 𝑛𝑞⊗
𝑖=1

RX(𝜃 (𝑥 )
𝑙,𝑖
) · RZ(𝜃 (𝑧 )

𝑙,𝑖
)
)
· CNOTRing . (9)

After𝑛𝑙 layers, the cumulative unitary𝑈 (𝜽 ) is:𝑈 (𝜽 ) = ∏𝑛𝑙
𝑙=1𝑈

(𝑙 ) (𝜽 (𝑙 ) ),
Thus, the final quantum state is: |𝜓out (𝜽 )⟩ = 𝑈 (𝜽 ) |𝜓init⟩ We mea-
sure Pauli-Z operators on each qubit:𝑍𝑖 = 𝐼 ⊗· · ·⊗𝑍 ⊗· · ·⊗𝐼 , yield-
ing expectation values ⟨𝜓out |𝑍𝑖 |𝜓out⟩ ∈ [−1, 1]. Collecting them for
𝑖 = 1, . . . , 𝑛𝑞 yields a quantum feature vector:

q(𝜽 ) =
(
⟨𝑍1⟩, . . . , ⟨𝑍𝑛𝑞 ⟩

)⊤ ∈ R𝑛𝑞 , (10)

which we feed into subsequent classic layers in the network.

4.2 Rainbow DQN Integration
Our VQR-DQN incorporates all components of Rainbow DQN, aug-
mented by the quantum feature extractor. Below, we detail each
component and its role in the overall architecture.

4.2.1 Noisy Networks for Exploration. The VQR-DQN employs
noisy dense layers to facilitate exploration by introducing trainable
noise into the network parameters. This approach allows the agent
to explore without relying solely on the 𝜖-greedy policy. The noisy
layers modify the weights and biases as follows:

w = w𝜇 +w𝜎 ⊙ 𝝐𝑤, b = b𝜇 + b𝜎 ⊙ 𝝐𝑏 , (11)

where w𝜇 ,w𝜎 and b𝜇 , b𝜎 are trainable parameters, and 𝝐𝑤 , 𝝐𝑏 are
noise variables sampled from a Gaussian distribution. The noise
injection encourages the network to explore more diverse actions
by perturbing the 𝑄-values during training.

4.2.2 Prioritized Experience Replay. The Prioritized Experience
Replay (PER) buffer enables the agent to focus more on transitions
that have a higher learning potential by sampling based on the
temporal-difference (TD) error 𝛿𝑖 . The sampling probability for
each transition 𝑖 is given by:

𝑝𝑖 =
|𝛿𝑖 |𝛼 + 𝜖∑
𝑗

��𝛿 𝑗 ��𝛼 + 𝜖 , (12)

where 𝛿𝑖 is the TD error for the transition is computed as: 𝛿𝑖 =

𝑟𝑡 + 𝛾 max𝑎′ 𝑄target (𝑠𝑡+1, 𝑎′) − 𝑄main (𝑠𝑡 , 𝑎𝑡 ), where 𝛼 controls the
degree of prioritization, and 𝜖 ensures that all transitions have a
non-zero probability of being sampled.

4.2.3 𝑛-step Returns. To provide richer learning signals, the VQR-
DQN computes 𝑛-step returns for sampled transitions. The 𝑛-step
return for a transition starting at time step 𝑡 is defined as:

𝐺
(𝑛)
𝑡 =

𝑛−1∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘 + 𝛾𝑛𝑄target (𝑠𝑡+𝑛, 𝑎𝑡+𝑛), (13)

where 𝛾 is the discount factor, 𝑟𝑡+𝑘 is the reward at step 𝑡 + 𝑘 , and
𝑄target is the target network. The 𝑛-step return combines immediate
and future rewards over a longer horizon, improving the stability
and efficiency of learning.

4.2.4 Double DQN (DDQN). To mitigate overestimation bias, VQR-
DQN employs the DDQN technique [38]. The target 𝑄-value is
computed using the main network to select actions and the target
network to evaluate them:

𝑎∗ = argmax
𝑎′

𝑄main (s′, 𝑎′;𝜃 ), 𝑦 = 𝑟 + 𝛾𝑄target (s′, 𝑎∗;𝜃−), (14)

where 𝑄main and 𝑄target denote the main and target networks, re-
spectively.
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4.2.5 Dueling Distributional Q-Learning. The VQR-DQN integrates
the dueling architecture into the distributional 𝑄-learning (C51)
framework to improve stability and learning efficiency. In this
approach, the 𝑄-value function is decomposed into two streams:
Value Stream V(𝑠) represents the state value, independent of ac-
tions, Advantage Stream A(𝑠, 𝑎) represents the relative benefit of
taking action 𝑎 in state 𝑠 . The network outputs two sets of logits,
h𝑉 (𝑠) and h𝐴 (𝑠), which are transformed into probability distribu-
tions using the Softmax function:

V(𝑠) = Softmax(h𝑉 (𝑠)) ∈ R1×𝑁atoms ,

A(𝑠) = Softmax(h𝐴 (𝑠)) ∈ R |A |×𝑁atoms
(15)

The final 𝑄-value distribution p(𝑠, 𝑎) for each action is computed
by combining the value and advantage streams:

p(𝑠, 𝑎) = V(𝑠) +
(
A(𝑠, 𝑎) − 1

|A|
∑︁
𝑎′

A(𝑠, 𝑎′)
)
. (16)

This formulation ensures the advantage function has zero mean
across actions, making the network more stable. The output p(𝑠, 𝑎)
represents a categorical distribution over discrete support points
(atoms), capturing the uncertainty in future rewards. The complete
VQR-DQN framework is detailed in Algorithm 1, which describes
the quantum-enhanced forward pass with Ring-topology VQC fea-
ture extraction and dueling distributional heads.

Algorithm 1: VQR-DQN Algorithm
Input: State vector s ∈ R𝑛state

Output: Distribution of 𝑄-values p(𝑠, 𝑎) for each action
𝑎 ∈ A

Step 1: Initialize Network Parameters
Number of qubits 𝑛𝑞 , layers in VQC 𝑛𝑙
Noisy layers with random weights w𝜇 ,w𝜎

Distributional atomsZ = {𝑧1, . . . , 𝑧𝑁atoms }
Step 2: Input Processing

x← NoisyDense(s, 512, ReLU)
x← NoisyDense(x, 512, ReLU)

Step 3: Quantum Feature Extraction using VQC
qencoded ← Dense(2 × 𝑛𝑞 × 𝑛𝑙 , tanh) (x)
for 𝑙 = 1 to 𝑛𝑙 do

Apply Hadamard gates to all qubits: 𝐻⊗𝑛𝑞
Apply parameterized rotations RX(𝜃 (𝑥 )

𝑙,𝑖
) and

RZ(𝜃 (𝑧 )
𝑙,𝑖
) to each qubit 𝑖

Apply Ring entanglement:
CNOT(𝑞𝑖 → 𝑞 (𝑖+1) mod 𝑛𝑞 )

Measure Pauli-Z expectation values:
q(𝜽 ) ← [⟨𝑍1⟩, . . . , ⟨𝑍𝑛𝑞 ⟩]

Step 4: Dueling Distributional Head
Value stream: V(𝑠) ← Softmax(h𝑉 (𝑠))
Advantage stream: A(𝑠, 𝑎) ← Softmax(h𝐴 (𝑠, 𝑎))
Final 𝑄-value distribution:
p(𝑠, 𝑎) = V(𝑠) +

(
A(𝑠, 𝑎) − 1

|A |
∑

𝑎′ A(𝑠, 𝑎′)
)

return Distribution p(𝑠, 𝑎)∀𝑎 ∈ A

5 Implementation
This section describes the training procedure of the VQR-DQN
framework, including network initialization, agent-environment
interaction, and network optimization. Algorithm 2 outlines the
training procedure incorporating prioritized replay, 𝑛-step returns,
and target network updates.

5.1 Network Initialization
The VQR-DQN agent consists of a main network 𝑄main and a tar-
get network 𝑄target, both initialized with the same parameters at
the start of training. The network comprises noisy dense layers
followed by a VQC for feature extraction and a dueling distribu-
tional head to estimate the 𝑄-value distribution for each action.
The target network is updated periodically to stabilize the learning
process. The replay buffer D is initialized as a PER buffer, which
allows the agent to sample transitions based on their TD errors.
The exploration strategy begins with a high exploration rate 𝜖 and
gradually decays over time using an 𝜖-greedy policy.

5.2 Agent-Environment Interaction
Action Selection. Each episode resets environment to initial state

𝑠0. At time step 𝑡 , agents select action 𝑎𝑡 using 𝜖-greedy policy:
with probability 𝜖 , random action from A; otherwise, action maxi-
mizing 𝑄-value from main network 𝑄main (𝑠𝑡 , 𝑎). Transition tuples
(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1, 𝑑𝑡 ) store in replay buffer, where 𝑑𝑡 indicates episode
termination.

Exploration-Exploitation Strategy. Exploration rate 𝜖 follows ex-
ponential decay: 𝜖 ← max(𝜖 × 𝜖decay, 𝜖min), where 𝜖decay controls
decay rate and 𝜖min sets lower bound.

5.3 Network Optimization
During each training step, a mini-batch B of transitions is sampled
from the replay buffer D, with sampling probability proportional
to the priorities (Eq. 12). For each sampled mini-batch, the agent
performs a gradient descent step to minimize the loss between the
predicted𝑄-value distribution and the target distribution. Here, the
𝑛-step return 𝐺 (𝑛)𝑡 is used to compute a more stable target:

𝐺
(𝑛)
𝑡 =

𝑛−1∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘 + 𝛾𝑛𝑄target (𝑠𝑡+𝑛, 𝑎∗), (17)

where 𝑎∗ = argmax𝑎 𝑄main (𝑠𝑡+𝑛, 𝑎). This 𝑛-step return provides
richer learning signals by incorporating future rewards over a
longer horizon.

The loss function is based on the cross-entropy between the
predicted distribution and the projected target distribution: L =

EB
[
𝛿2

]
, where 𝛿 is the TD error for each transition in the mini-

batch. The loss ensures that the 𝑄-value estimates from the main
network 𝑄main converge toward the 𝑛-step return target. Then, the
priorities in the replay buffer are updated based on the new TD
errors: P(𝑖) ← |𝛿𝑖 |𝛼 +𝜖 , where 𝛼 controls the prioritization degree,
and 𝜖 ensures that all transitions have non-zero priority. Gradients
are clipped to prevent exploding gradients. The parameters of the
main network 𝜃 are then updated using the Adam optimizer with
a learning rate 𝜂. Finally, the target network 𝑄target is periodically
synchronized with the main network𝑄main to stabilize the training.
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Algorithm 2: VQR-DQN Initialization and Training Proce-
dure
Input: Replay buffer D, target network 𝑄target, main

network 𝑄main
Output: Updated network parameters 𝜃
Initialize

Replay buffer D ← ∅
Target network 𝑄target ← 𝑄main
Exploration rate 𝜖 ← 1.0

For each episode
Reset environment: 𝑠0 ← env.reset()
foreach time step 𝑡 do

Step 1: Action Selection
if random() < 𝜖 then

Select random action 𝑎𝑡 ∈ A
else

Compute 𝑄-values from the main network:
𝑄 (𝑠𝑡 , 𝑎) =

∑𝑁atoms
𝑖=1 𝑧𝑖 · 𝑝𝑖 (𝑠𝑡 , 𝑎)

Select action 𝑎𝑡 = argmax𝑎 𝑄 (𝑠𝑡 , 𝑎)
Execute action 𝑎𝑡 , observe reward 𝑟𝑡 and next state
𝑠𝑡+1
Store transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1, 𝑑𝑡 ) in replay buffer D
Update exploration rate: 𝜖 ← max(𝜖 × 𝜖decay, 𝜖min)

Step 2: Network Optimization
Sample mini-batch B from prioritized replay buffer D
foreach transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1, 𝑑𝑡 ) ∈ B do

Compute 𝑛-step return:
𝐺
(𝑛)
𝑡 =

∑𝑛−1
𝑘=0 𝛾

𝑘𝑟𝑡+𝑘 + 𝛾𝑛𝑄target (𝑠𝑡+𝑛, 𝑎∗)
where 𝑎∗ = argmax𝑎 𝑄main (𝑠𝑡+𝑛, 𝑎)
Compute TD error: 𝛿 =𝐺

(𝑛)
𝑡 −𝑄main (𝑠𝑡 , 𝑎𝑡 )

Update priorities: P(𝑖) ← |𝛿 |𝛼 + 𝜖
Perform gradient descent step using loss:
L = EB

[
𝛿2

]
Periodically update target network: 𝑄target ← 𝑄main

return Updated network parameters 𝜃

6 Results
We present VQR-DQN experimental setup, performance evalua-
tion, and learning behavior analysis versus baseline (random as-
signment), DDQN, and Rainbow DQN using average rewards and
normalized makespan reduction across varying HRAP complex-
ity, assessing learning efficiency, stability, and final performance
advantages.

6.1 Experimental Setup
Four HRAP configurations evaluate performance under varying
complexity: 3 Officers - 2 Tasks - 2 Events (3O-2T-2E), 4 Officers
- 3 Tasks - 2 Events (4O-3T-2E), 4 Officers - 3 Tasks - 3 Events
(4O-3T-3E), and 5 Officers - 4 Tasks - 4 Events (5O-4T-4E). All
methods were trained for 50,000 episodes under identical conditions,
with the best-performing checkpoints evaluated across 200 testing
episodes. Quantum simulations used TensorFlow Quantum with
computations performed on IonQ Aria-1 quantum processing unit
via IonQ quantum computing service.

6.1.1 Learning Curves. Figure 3 illustrates the learning curves
over 50,000 training episodes for all configurations, demonstrating
how each algorithm’s performance evolves during the training pro-
cess. The learning curves reveal that VQR-DQN generally achieved
faster convergence and more stable learning compared to other
approaches, particularly in the early stages of training. Learning
speed and stability also vary with problem complexity. In simpler
scenarios like 3O-2T-2E, all algorithms achieve relatively quick and
smooth convergence within the first 15,000 episodes. However, as
the configuration complexity increases, particularly in 5O-4T-4E,
the convergence becomes notably slower and more gradual, with
algorithms requiring nearly 30,000 to 40,000 episodes to stabilize.
Despite this, VQR-DQN maintains more stable improvement com-
pared to other algorithms, especially in later training stages.

6.1.2 Performance Evaluation. Table 1 shows the averaged rewards
across 200 test episodes using the best checkpoint from training.
In the simplest configuration (3O-2T-2E), VQR-DQN achieved the
most substantial improvement, showing a 26.8% increase in perfor-
mance compared to the baseline, while DDQN and Rainbow DQN
showed improvements of 13.1% and 19.8% respectively. This signif-
icant enhancement suggests that the quantum-enhanced feature
extraction is particularly effective in capturing important patterns
in simpler action spaces.

As the problem complexity increased in the 4O-3T-2E configura-
tion, VQR-DQN maintained its superior performance with a 23.7%
improvement over the baseline, compared to DDQN’s 15.1% and
Rainbow DQN’s 19.8%. The learning curves show that VQR-DQN
not only achieved better final performance but also demonstrated
more stable learning progression throughout the training process.

In more complex scenarios (4O-3T-3E and 5O-4T-4E), while
the relative improvements were smaller due to increased problem
difficulty, VQR-DQN still maintained its advantage. For the most
complex configuration (5O-4T-4E), VQR-DQN achieved a 10.1%
improvement over the baseline, outperforming both DDQN (4.9%)
and Rainbow DQN (7.2%). VQR-DQN consistently outperformed
baseline random assignment, DDQN, and Rainbow DQN across all
configurations, demonstrating that quantum-enhanced feature ex-
traction provides robust, scalable advantages for resource allocation
optimization, particularly in moderate complexity scenarios.

7 Impact of Topologies in VQCs for RL
We examine the correlation between expressibility and VQC topol-
ogy performance in RL, specifically HRAP tasks. Expressibility
quantifies how uniformly a circuit’s random parameterizations ex-
plore state space through Kullback–Leibler divergence between
circuit-produced states and uniform Haar-random distribution [10,
12]. Entanglement captures average circuit entanglement gen-
eration, measured via Meyer-Wallach (MW) measure [23], i.e., a
global metric based on single-qubit reduced state purity ranging
from 0 (no entanglement) to 1 (maximal multi-qubit entanglement).
Alternative measures include Scott’s multipartite quantifiers [31],
averaging bipartite entanglement across all partitions.

Recent studies systematically evaluate entangler connectivities
(Ring, Linear, Star, All-to-All) using these metrics. Both theoretical
analyses and our experimental results indicate that Ring topolo-
gies provide rich expressibility and entanglement structure. In our
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Figure 3: The learning curves for VQR-DQN and other algorithms in 50,000 episodes for different HRAP configurations (with
their action space).

Table 1: Averaged rewards (Normalized makespan reduction%) over the base-
line for VQR-DQN and other algorithms across 200 testing episodes, eval-
uated from the agent checkpoint with the highest training score. The best
results are in bold.

Config. |A | Baseline DDQN Rainbow DQN VQR-DQN (Ours)

3O-2T-2E 34 -0.5225 -0.4539 (▲ 13.1%) -0.4189 (▲ 19.8%) -0.3823 (▲ 26.8%)
4O-3T-2E 46 -0.3689 -0.3132 (▲ 15.1%) -0.2957 (▲ 19.8%) -0.2815 (▲ 23.7%)
4O-3T-3E 49 -0.3316 -0.3032 (▲ 8.6%) -0.3012 (▲ 9.2%) -0.2872 (▲ 13.4%)
5O-4T-4E 516 -0.2488 -0.2366 (▲ 4.9%) -0.2309 (▲ 7.2%) -0.2236 (▲ 10.1%)

Table 2: Averaged rewards (Normalized makespan
reduction%) over the baseline for different topolo-
gies for VQR-DQN across 200 testing episodes in
the configuration 3O-2T-2E (|A| = 34), evaluated
from the agent checkpoint with the highest train-
ing score. The best results are in bold.

Algorithm Rewards

Baseline -0.5225

VQR-DQN + Linear -0.4249 (▲ 18.7%)
VQR-DQN + Star -0.4514 (▲ 13.6%)
VQR-DQN + Ring -0.3823 (▲ 26.8%)
VQR-DQN + All-to-All -0.4103 (▲ 21.5%)

HRAP environment, VQR-DQN with Ring topology achieved supe-
rior average rewards (Ring > All-to-All ≈ Linear≫ Star) (see Table
2), aligning with [10] findings that Ring circuits exhibit the highest
average expressibility and entanglement for given qubits and layers.
This correlates with [16] observations of moderate-to-strong cor-
relation between circuit expressibility and classification accuracy,
and [33] noted “substantial improvement” in expressibility when
two-qubit gates are arranged in Ring or All-to-All versus Linear
topology.

Practically, Star topology entangles peripheral qubits only via
the central qubit, creating a correlated entanglement structure,
while Ring distributes entangling operations around the loop, pro-
moting global entanglement [10]. Ring’s greater entangling reach
yields higherMW scores and uniform state coverage, enabling quan-
tum agents to represent complex HRAP policies. RL often requires
modeling sequential or spatial correlations; Ring’s circular connec-
tivity aligns with these structures, enabling efficient information
flow and long-range dependency capture. However, the empirical
connection between expressibility/entanglement metrics and VQC
performance in RL tasks remains to be proven [33, 12].

8 Conclusion
We introduce VQR-DQN, a hybrid quantum-classical RL agent
integrating Ring-topology VQCs into Rainbow DQN. VQR-DQN
achieved superior HRAP performance, reducing normalizedmakespan
by 26.8% versus random baseline and outperforming Double DQN

and Rainbow DQN by 4.9-13.4%. Ring-connected circuits consis-
tently surpassed other topologies through broader entangling reach,
aligning with theoretical expressibility and learning dynamics in-
sights. These findings highlight quantum-enhanced feature extrac-
tion potential in complex decision-making, suggesting co-designed
quantum architectures with RL objectives could yield further gains
as quantum hardware advances.

Acknowledgement
This work has been supported by NSERC Discovery Grant No
RGPIN 2025-00129.

References
[1] Eva Andrés et al. 2022. On the use of quantum reinforcement learning in

energy-efficiency scenarios. Energies, 15, 16, 6034.
[2] Sana Anjum et al. 2024. Machine learning-based resource allocation algorithms

for 6g networks. In 2024 2nd International Conference on Disruptive Technologies
(ICDT). IEEE, 1086–1091.

[3] James Adu Ansere et al. 2023. Quantum deep reinforcement learning for dy-
namic resource allocation in mobile edge computing-based iot systems. IEEE
Transactions on Wireless Communications, 23, 6, 6221–6233.

[4] Seyed Alireza Rahimi Azghadi et al. 2024. An energy-efficient lora iot system
for water monitoring: lessons learned and use cases. In 2024 IEEE International
Conference on Consumer Electronics-Asia (ICCE-Asia). IEEE, 1–4.

[5] Mina Azimi et al. 2013. Optimal allocation of human resources by using linear
programming in the beverage company. Universal Journal of Management and
Social Sciences, 3, 5, 48–54.

[6] Thomas Barrett, William Clements, Jakob Foerster, and Alex Lvovsky. 2020. Ex-
ploratory combinatorial optimization with reinforcement learning. Proceedings
of the AAAI Conference on Artificial Intelligence, 34, 04, (Apr. 2020), 3243–3250.



SAC’26, March 23–27, 2026, Thessaloniki, Greece Truong Thanh Hung Nguyen, Truong Thinh Nguyen, and Hung Cao

[7] Sana Bouajaja and Najoua Dridi. 2017. A survey on human resource allocation
problem and its applications. Operational Research, 17, 339–369.

[8] Maxime Bouton et al. 2019. Safe reinforcement learning with scene decom-
position for navigating complex urban environments. In 2019 IEEE Intelligent
Vehicles Symposium (IV). IEEE, 1469–1476.

[9] Samuel Yen-Chi Chen et al. 2020. Variational quantum circuits for deep rein-
forcement learning. IEEE access, 8, 141007–141024.

[10] Guilherme Ilário Correr et al. 2024. Characterizing randomness in parame-
terized quantum circuits through expressibility and average entanglement.
Quantum Science and Technology, 10, 1, 015008.

[11] Daoyi Dong et al. 2008. Quantum reinforcement learning. IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics), 38, 5, 1207–1220.

[12] Theodora-Augustina Drăgan et al. 2022. Quantum reinforcement learning
for solving a stochastic frozen lake environment and the impact of quantum
architecture choices. arXiv preprint arXiv:2212.07932.

[13] Haoxuan Du and Lei Na. 2023. Automatic decision algorithm of human resource
management system based on reinforcement learning. In 2023 International
Conference on Internet of Things, Robotics and Distributed Computing (ICIRDC).
IEEE, 277–282.

[14] Zsolt Ercsey and Zoltán Kovács. 2024. Multicommodity network flow model
of a human resource allocation problem considering time periods. Central
European Journal of Operations Research, 32, 4, 1041–1059.

[15] Matteo Hessel et al. 2018. Rainbow: combining improvements in deep reinforce-
ment learning. In Proceedings of the AAAI conference on artificial intelligence.
Vol. 32.

[16] Thomas Hubregtsen et al. 2021. Evaluation of parameterized quantum circuits:
on the relation between classification accuracy, expressibility, and entangling
capability. Quantum Machine Intelligence, 3, 1, 9.

[17] Bassem Jarboui et al. 2008. A combinatorial particle swarm optimization for
solving multi-mode resource-constrained project scheduling problems. Applied
Mathematics and Computation, 195, 1, 299–308.

[18] Sofiene Jerbi et al. 2021. Parametrized quantum policies for reinforcement
learning. Advances in Neural Information Processing Systems, 34, 28362–28375.

[19] Sekione Reward Jeremiah et al. 2024. Digital twin-assisted resource allocation
framework based on edge collaboration for vehicular edge computing. Future
Generation Computer Systems, 150, 243–254.

[20] Petar Kormushev et al. 2013. Reinforcement learning in robotics: applications
and real-world challenges. Robotics, 2, 3, 122–148.

[21] Timothy P Lillicrap et al. 2015. Continuous control with deep reinforcement
learning. arXiv preprint arXiv:1509.02971.

[22] Neda Manavizadeh et al. 2013. A simulated annealing algorithm for a mixed
model assembly u-line balancing type-i problem considering human efficiency
and just-in-time approach. Computers & industrial engineering, 64, 2, 669–685.

[23] David A Meyer and Nolan R Wallach. 2002. Global entanglement in multiparti-
cle systems. Journal of Mathematical Physics, 43, 9, 4273–4278.

[24] Nico Meyer et al. 2022. A survey on quantum reinforcement learning. arXiv
preprint arXiv:2211.03464.

[25] Volodymyr Mnih et al. 2015. Human-level control through deep reinforcement
learning. Nature, 518, (Feb. 2015), 529–533.

[26] Özcan Mutlu et al. 2013. An iterative genetic algorithm for the assembly line
worker assignment and balancing problem of type-ii. Computers & Operations
Research, 40, 1, 418–426.

[27] Phong Nguyen et al. 2021. Can reinforcement learning solve a human allocation
problem? Bridging the Gap Between AI Planning and Reinforcement Learning
(PRL) Workshop, ICAPS 2021.

[28] Truong Thanh Hung Nguyen et al. 2024. Temporal point processes for business
process monitoring. Quy Nhon University Journal of Science. doi:10.52111/qnjs
.2024.18501.

[29] Ciprian Paduraru et al. 2021. Task distribution and human resource man-
agement using reinforcement learning. In 2021 36th IEEE/ACM International
Conference on Automated Software Engineering Workshops (ASEW). IEEE, 96–
101.

[30] Xue Bin Peng et al. 2017. Deeploco: dynamic locomotion skills using hierarchi-
cal deep reinforcement learning. ACM Transactions on Graphics (TOG), 36, 4,
1–13.

[31] Andrew J Scott. 2004. Multipartite entanglement, quantum-error-correcting
codes, and entangling power of quantum evolutions. Physical Review A—Atomic,
Molecular, and Optical Physics, 69, 5, 052330.

[32] David Silver et al. 2017. Mastering chess and shogi by self-play with a general
reinforcement learning algorithm. arXiv preprint arXiv:1712.01815.

[33] Sukin Sim et al. 2019. Expressibility and entangling capability of parameterized
quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum
Technologies, 2, 12, 1900070.

[34] Andrea Skolik et al. 2022. Quantum agents in the gym: a variational quantum
algorithm for deep q-learning. Quantum, 6, 720.

[35] Rafael Sotelo. 2023. Quantum in consumer technology. IEEE Consumer Elec-
tronics Magazine, 12, 5, 4–7.

[36] Anh Son Ta and Thi Thuy Nguyen. 2024. Solving resource allocation problem
in wifi network by dantzig-wolfe decomposition algorithm. JST: Smart Systems
and Devices, 34, 1, 9–15.

[37] Nguyen Duy Tan et al. 2024. Optimization and inventory management under
stochastic demand using metaheuristic algorithm. Plos one, 19, 1, e0286433.

[38] Hado Van Hasselt et al. 2016. Deep reinforcement learning with double q-
learning. In Proceedings of the AAAI conference on artificial intelligence. Vol. 30.

[39] Mariona Vila and Jordi Pereira. 2014. A branch-and-bound algorithm for assem-
bly line worker assignment and balancing problems. Computers & Operations
Research, 44, 105–114.

[40] Ziyu Wang et al. 2016. Dueling network architectures for deep reinforcement
learning. In International conference on machine learning. PMLR, 1995–2003.

[41] Christopher JCHWatkins and Peter Dayan. 1992. Q-learning.Machine learning,
8, 279–292.

[42] Hairun Xu et al. 2025. Quantum reinforcement learning for real-time optimiza-
tion in electric vehicle charging systems. Applied Energy, 383, 125279.

[43] Tong Zhang et al. 2021. Udarmf: an underwater distributed and adaptive re-
source management framework. IEEE Internet of Things Journal, 9, 10, 7196–
7210.

A Appendix
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Figure 4: Graphs of the topologies observed in different quan-
tum computer architectures.

In this section, we introduce fundamental terminologies essential
for understanding VQCs.

Topologies. (Figure 4) to the different graph topologies related to
each of the connectivities between qubits that can be performed in
quantum hardware. Common topologies include:
• Linear: Qubits lie in a chain, each entangled only with im-
mediate neighbors.
• Ring: Arranged in a circle, each qubit is entangled with two
neighbors.
• Star: A central qubit directly connects to all peripheral
qubits, and the latter do not interconnect.
• All-to-All: Every qubit can entangle with every other qubit.

Ansätze. refers to the specific circuit structure implemented
within a given topology:
• Parameterized gates: Rotational operations (RX, RY, RZ)
with trainable angles that can be optimized through classical
algorithms.
• Entangling gates: Fixed operations (typically CNOT) that
create quantum correlations between qubits according to the
chosen topology.
• Layered structure: Repeating blocks of parameterized and
entangling gates that increase circuit depth and expressivity.
• Hardware-efficient ansatz: Circuit designs that minimize
the number of gates while maintaining computational power.
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