
SEval-NAS: A Search-Agnostic Evaluation
for Neural Architecture Search

Atah Nuh Mih

Analytics Everywhere Lab,

University of New Brunswick

Fredericton, Canada

atah.mih@unb.ca

Jianzhou Wang

Analytics Everywhere Lab,

University of New Brunswick

Fredericton, Canada

maxwell.wang@unb.ca

Truong Thanh Hung Nguyen

Analytics Everywhere Lab,

University of New Brunswick

Fredericton, Canada

hung.ntt@unb.ca

Hung Cao

Analytics Everywhere Lab,

University of New Brunswick

Fredericton, Canada

hcao3@unb.ca

Abstract
Neural architecture search (NAS) algorithms have automated the

discovery of new neural networks by generating candidate architec-

tures that meet desired criteria. Evaluating these candidate architec-

tures is often hardcoded into the algorithms, making it challenging

to adopt new evaluation criteria without significantly changing

the algorithm. This inflexibility is especially evident in hardware-

aware NASs whose search objectives are tailored for hardware

such as edge devices. To overcome this challenge, we propose a

metric-evaluation mechanism called SEval-NAS that converts neu-

ral networks to strings, obtains their vector representation, and

predicts the evaluationmetric.We experimented on twoNAS bench-

marks: NATS-Bench and HW-NAS-Bench, evaluating the neural

architectures on accuracy, latency, and memory. By comparing

Kendall’s 𝜏 correlation coefficients in these experiments, the results

showed that latency and memory predictions had stronger correla-

tions than accuracy, indicating SEval-NAS’ suitability as a hardware

cost predictor. We further investigated the feasibility of integrating

SEval-NAS in an existing NAS algorithm by evaluating candidate

architectures in FreeREA on metrics not originally included. The

results showed that our method successfully ranked architectures

generated by FreeREA, did not drastically affect search time, and

did not require significant changes to the search algorithm.

CCS Concepts
•Computingmethodologies→Neural networks; Searchmethod-
ologies; • Theory of computation→ Network optimization.

Keywords
Neural architecture search, network optimization

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SAC’26, Thessaloniki, Greece
© 2026 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-X-XXXX-XXXX-X/26/03

https://doi.org/XXXXXXX.XXXXXXX

ACM Reference Format:
Atah Nuh Mih, Jianzhou Wang, Truong Thanh Hung Nguyen, and Hung

Cao. 2026. SEval-NAS: A Search-Agnostic Evaluation for Neural Archi-

tecture Search. In Proceedings of The 41st ACM/SIGAPP Symposium on
Applied Computing (SAC’26). ACM, New York, NY, USA, 9 pages. https:

//doi.org/XXXXXXX.XXXXXXX

1 Introduction
Neural architecture search (NAS) was developed to automate the

design of neural networks (NNs), addressing the knowledge gap

required to design these networks manually. Traditional NAS [35]

used reinforcement learning (RL) to generate variable-length strings

representing architectures, achieving state-of-the-art performance

but at high computational cost. This shortcoming prompted re-

search into more efficient search methods, such as a cell-based

search space with learnable transferable architectures [34], Efficient

NAS (ENAS) [23], Progressive NAS (PNAS) [17], and Regularized

Evolution for Image Classifier Architecture Search [25]. In gen-

eral, NAS is divided into five major components: (1) the search

space containing predefined operation sets; (2) the controller that

determines how neural architectures are generated; (3) the can-

didate architecture(s) generated; (4) the evaluation phase with a

strategy for assessing architectures feasibility; and (5) the optimal

architecture(s) that satisfy search objectives.

The evaluation phase is one of the most critical steps in NAS. It

evaluates the performance of candidate architecture(s) for desired

objectives and guides the search algorithm towards an optimal

architecture [5]. Depending on the evaluation method used, this

phase could pose a significant search cost to the NAS approach

since all the candidate architectures are trained and tested to assess

their performance [2]. For example, [34] trained each candidate

architecture till convergence on proxy data to obtain its evalua-

tion metrics, resulting in a search cost of 22,400 GPU hours. The

shortcomings of full training motivated incomplete training to ac-

celerate the ranking of candidate architectures, thereby reducing

search costs [26]. Another challenge with existing NAS approaches

is the inflexibility of accommodating new evaluation metrics. Differ-

ent NAS approaches aim to find architectures that satisfy different

performance criteria. For example, various hardware-aware NAS

https://orcid.org/0000-0002-6750-9536
https://orcid.org/0000-0002-0788-4377
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


SAC’26, March 23–27, 2026, Thessaloniki, Greece Atah Nuh Mih, Jianzhou Wang, Truong Thanh Hung Nguyen, and Hung Cao

(HW-NAS) algorithms include hardware cost metrics such as la-

tency [29, 30, 10] and memory [16] to select candidate architectures

suitable for hardware platforms such as edge devices. Thus, the

evaluation criteria are hardcoded into the search design of NAS

algorithms, making it challenging to adopt new evaluation metrics

without re-designing the search. Therefore, an evaluation mecha-

nism that is independent of the search algorithm and can be flexibly

adapted to any NAS approach is necessary.

To address these challenges, we propose a search-agnostic evalu-

ation approach called SEval-NAS. It converts any NN into its string

representation, encodes the string to obtain the vector embedding,

and predicts the evaluation metrics. This is based on the premise

that NNs’ performance reflects the structural dependencies of their

internal operations (e.g., type of convolution, number of filters, type

of activations). Extracting this structural information can, therefore,

help predict their given performance. We show that SEval-NAS

supports different types of metrics and evaluation objectives and

can be directly applied to an existing NAS method with minimal

changes to the search algorithm and without significantly affecting

the search. We experiment on two NAS benchmarks: NATS-Bench

[7] and HW-NAS-Bench [15] for accuracy, latency, and memory,

and further assess how our method affects a NAS algorithm (i.e.,

FreeREA [2]).

In summary, this work presents the following contributions:

• A network-to-string conversion mechanism that traverses

the autograd graph of any NN and generates its textual rep-

resentation, making it adaptive to all types of NNs.

• An encoder-predictor network (i.e., an evaluator) that ex-

tracts meaningful relationships between the strings and their

evaluation metric. This network can be designed to include

any evaluationmetric (notably hardware costs) and any num-

ber of evaluation objectives.

• SEval-NAS that is independent of the NAS algorithm and

combines the network-to-string conversion mechanism and

the evaluator to evaluate candidate architectures in NAS.

• An ablation study of three different encoder/decoder mod-

els (T5-small, T5-base, and T5-large) in SEval-NAS on NAS

benchmarks.

2 Literature Review
This section discusses the most relevant works related to training-

free NAS, HW-NAS, and NAS as a string search problem, highlight-

ing the gaps that motivated our approach.

2.1 Training-Free NAS
The costly evaluation of candidate architectures has motivated the

development of training-free metrics that evaluate candidate archi-

tectures and reduce the search time of NAS. [1] proposed regression

models to predict the final performance of models from learning

curve trajectories based on features obtained from the neural ar-

chitectures, hyperparameters, and time-series measurements. [21]

proposed NASWOT, which examines the correlation of activations

between data points in untrained NNs and scores networks based

on the binary codes corresponding to this correlation. [4] proposed

TE-NAS, a training-free NAS that analyzes the spectrum of the

neural tangent kernel (NTK) and the number of linear regions to

rank candidate architectures. While these methods successfully ad-

dress the evaluation of candidate architectures, they solely focus on

accuracy as their performance metrics. We extend beyond accuracy

alone by including hardware metrics to assess the suitability of

architectures for different computing environments.

Hardware cost predictors have been developed, such as a nn-

Meter [32], a latency predictor for edge devices; and a GPU esti-

mator for deep learning models [9]. Integrating different single-

purpose cost predictors will increase the complexity of the design,

so we propose a multi-purpose cost estimator that can incorporate

different hardware costs.

2.2 Hardware-Aware NAS
The search for good neural architectures extends beyond just high-

accuracy networks. In cases where the hardware environment is

crucial, cost metrics must be considered when evaluating the NNs.

This requirement gave rise to HW-NAS, which includes a hard-

ware cost metric and test accuracy in evaluating candidate archi-

tectures. Several HW-NAS approaches have been proposed, such

as SqueezeNext [11], IRLAS [12], and FB-Net [30]. These works

only provide the optimal architectures obtained from the search,

leaving a question about their performance if the search were to be

evaluated differently.

Hardware-aware NAS equally targets edge devices because their

hardware environments require NNs suitable for their resource

constraints. Several NAS methods have been developed for edge

devices [14, 29, 20, 28]. While these works have been successful

in searching optimized NNs, they are usually designed to satisfy

a single hardware cost metric. Latency has often been used as the

evaluation metric in hardware-aware NAS [19, 33, 10, 16], whereas

few works include multiple cost metrics in their design [27].

These NAS methods are generally multi-objective and aim to

satisfy more than one primary objective pre-defined while design-

ing the search. Our approach provides an easy integration of a

cost evaluator for any desired objective (e.g., accuracy, latency, and

memory) and several objectives (e.g., single or bi-objectives).

2.3 NAS as a String Search Problem
NAS as a string search problem was proposed in the earliest NAS

work [34], where a variable-length string specifies the search space,

and a recurrent NN (i.e., controller) is used to generate such a string

using RL. GeNet [31] adopted a similar approach, representing net-

work structures as fixed-length binary strings and using genetic

algorithms to generate new architectures. [18] proposed Neural

Architecture Optimization (NAO) to find candidate networks us-

ing an encoder, a predictor, and a decoder network to perform the

search. The encoder maps the architectures to a continuous vector

space, the predictor approximates the classification accuracy, and

the decoder attempts to reconstruct the architecture. They directly

optimize the predictor by searching the embedding of neural archi-

tectures to derive the best architectures. Like other NAS methods,

the optimization is close-knit, with a prediction built into the search

itself. Contrary to this, our prediction mechanism is plug-and-play
and can complement existing NAS. We also expand the prediction

to include hardware costs, which is crucial to HW-NAS. A more



SEval-NAS: A Search-Agnostic Evaluation for Neural Architecture Search SAC’26, March 23–27, 2026, Thessaloniki, Greece

recent EVOPROMPTING [3] uses language modeling and prompt-

ing for code-level NN generation. This approach, however, is very

high-level as it generates programming code.

3 Methodology
Our proposed SEval-NAS framework is designed to evaluate neural

architectures within a NAS pipeline by leveraging a formalized

string-based representation and a predictive evaluation model. Let

A denote the set of candidate neural architectures, where each

architecture 𝑎 ∈ A is characterized by its computational graph.

The methodology transforms each architecture into a standard-

ized string representation, which is subsequently processed by an

evaluator to predict performance metrics. The predicted metrics

guide the NAS controller in optimizing the search process. The

framework consists of two primary components: (1) a network-

to-string conversion mechanism and (2) an evaluator network for

performance prediction. Fig. 1 provides a schematic of the proposed

methodology, illustrating its integration within a NAS pipeline.

3.1 Net-to-String Conversion
The network-to-string conversion process maps a neural architec-

ture 𝑎 ∈ A to a string representation 𝑠𝑎 ∈ S, where S is the space

of all possible string representations. Let 𝐺𝑎 = (𝑉𝑎, 𝐸𝑎) represent
the computational graph of architecture 𝑎 (generated during the

forward pass), with vertices 𝑉𝑎 corresponding to operations (e.g.,

convolution, pooling, ReLU) and edges 𝐸𝑎 representing data flow

between operations. The conversion function 𝑓 : A → S traverses

𝐺𝑎 (breadth-first) to extract structural and operational details, yield-

ing a string 𝑠𝑎 that encapsulates the architecture’s configuration.

Formally, the conversion process is defined as: 𝑠𝑎 = 𝑓 (𝐺𝑎), where
𝑓 systematically traverses𝑉𝑎 and 𝐸𝑎 to encode operations and their

connectivity into a standardized format. The resulting string 𝑠𝑎 is

tokenized into a sequence of tokens𝑇𝑎 = {𝑡1, 𝑡2, . . . , 𝑡𝑛}, where each
token 𝑡𝑖 corresponds to a specific operation or parameter in the

computational graph. This tokenization ensures a universal and

consistent representation, enabling compatibility across diverse

NAS tasks and datasets. The conversion is described in Algorithm

1.

3.2 Evaluator
The tokenized input is processed in the evaluator module to pre-

dict its performance metrics. The evaluator module, denoted as E,
predicts performancemetrics for a given architecture based on its to-

kenized representation𝑇𝑎 . LetM = {𝑚1,𝑚2, . . . ,𝑚𝑘 } represent the
set of target performance metrics (e.g., accuracy, latency, memory

usage). The evaluator maps the tokenized input to a vector of pre-

dicted metrics: 𝑚̂𝑎 = E(𝑇𝑎), where 𝑚̂𝑎 = [𝑚̂𝑎,1, 𝑚̂𝑎,2, . . . , 𝑚̂𝑎,𝑘 ] ∈ R𝑘

denotes the predicted values for the 𝑘 metrics.

The module consists of two components: an encoder and a pre-

dictor.

(1) Encoder: The encoder extracts a high-dimensional vector

representation of the architecture, capturing its structural

and contextual information. It is represented by a function

𝑔 : T → R𝑑
that transforms the tokenized sequence 𝑇𝑎 into

a high-dimensional embedding 𝑒𝑎 ∈ R𝑑
, capturing structural

Algorithm 1 Network to String Conversion

Input: Neural Network: 𝑛𝑒𝑡𝑎 ; Input Tensor: 𝑖𝑛𝑝
Output: Output token 𝑇𝑎
1: 𝐺𝑎 ←− 𝑛𝑒𝑡𝑎 (𝑖𝑛𝑝) ⊲ forward pass

2: 𝑛𝑜𝑑𝑒 =𝐺𝑎 (𝑟𝑜𝑜𝑡) ⊲ root node

3: 𝑠𝑎 = ∅ ⊲ output string

4: 𝑠𝑒𝑒𝑛 = ∅ ⊲ keep track of traversal

5: 𝑛𝑜𝑑𝑒_𝑖𝑑 = 0 ⊲ node index

6: function get_string(node)

7: if 𝑛𝑜𝑑𝑒 in 𝑠𝑒𝑒𝑛 then return
8: end if
9: 𝑠𝑒𝑒𝑛 ←− 𝑛𝑜𝑑𝑒
10: 𝑛𝑒𝑥𝑡_𝑛𝑜𝑑𝑒𝑠 = 𝑛𝑜𝑑𝑒.𝑛𝑒𝑥𝑡_𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 ⊲ neighbouring

vertices

11: for 𝑢 in 𝑛𝑒𝑥𝑡_𝑛𝑜𝑑𝑒𝑠 do
12: get_string(u)

13: end for
14: 𝑣𝑎𝑟𝑠 = 𝑛𝑜𝑑𝑒.𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ⊲ get operations and variables

15: 𝑛𝑎𝑚𝑒 = 𝑛𝑜𝑑𝑒.𝑛𝑎𝑚𝑒

16: 𝑠𝑎 ←− 𝑛𝑎𝑚𝑒, 𝑛𝑜𝑑𝑒_𝑖𝑑, 𝑣𝑎𝑟𝑠

17: end function
18: 𝑇𝑎 = 𝑡𝑜𝑘𝑒𝑛𝑖𝑧𝑒 (𝑠𝑎) ⊲ tokenization with any desired method

and contextual features of the architecture:

𝑒𝑎 = 𝑔(𝑇𝑎) .
The encoder employs a transformer-based architecture to

model dependencies within the token sequence, ensuring

robust feature extraction.

(2) Predictor: A function ℎ : R𝑑 → R𝑘
that maps the embed-

ding 𝑒𝑎 to the predicted metrics:

𝑚̂𝑎 = ℎ(𝑒𝑎) .
The prediction layer is a fully connected neural network

with 𝑘 output neurons, where the number of neurons corre-

sponds to the number of target metrics. For single-objective

prediction (e.g., latency), 𝑘 = 1, while for multi-objective

prediction (e.g., accuracy and latency), 𝑘 ≥ 2.

The evaluator is trained on a dataset D = {(𝑎𝑖 ,𝑚𝑖 )}𝑁𝑖=1, where
𝑚𝑖 ∈ R𝑘

are the true performance metrics for architecture 𝑎𝑖 . The

training objective minimizes the loss function:

L =
1

𝑁

𝑁∑︁
𝑖=1

ℓ (E(𝑇𝑎𝑖 ),𝑚𝑖 ),

where ℓ is a regression loss (e.g., mean squared error) that measures

the discrepancy between predicted and true metrics.

3.3 Integration into NAS Pipeline
The SEval-NAS framework is integrated into a NAS pipeline by

evaluating candidate architectures generated by the controller. Let

C denote the controller, which generates architectures 𝑎 ∈ A based

on a search strategy. The evaluator provides feedback in the form

of predicted metrics 𝑚̂𝑎 , enabling the controller to optimize the

search objective:

𝑎∗ = argmax

𝑎∈A
𝑢 (𝑚̂𝑎),



SAC’26, March 23–27, 2026, Thessaloniki, Greece Atah Nuh Mih, Jianzhou Wang, Truong Thanh Hung Nguyen, and Hung Cao

Search Space

Preprocessing

Network to String Conversion

Autograd Graph Traversal and 

String Generation

Generated 

Autograd Graph

Autograd Graph Traversal and 

String Generation

Generated 

Autograd Graph

Forward Pass

+
Randomized Input 

Vector

1.47 8.48 1.54 9.87 1.54...1.47 8.48 1.54 9.87 1.54...

Network to String Conversion

Autograd Graph Traversal and 

String Generation

Generated 

Autograd Graph

Forward Pass

+
Randomized Input 

Vector

1.47 8.48 1.54 9.87 1.54...

|1_Convolution|2_Relu|3... |1_Convolution|2_Relu|3_P...

Tokenizer

25 384 154 987 984...

|1_Convolution|2_Relu|3_P...

Tokenizer

25 384 154 987 984...

Candidate ArchitecturesCandidate Architectures EvaluationEvaluation Optimal Architecture(s)Optimal Architecture(s)

Ranking

ControllerController

Generating

Architectures

Selection

Neural Architecture Search 

SEval-NAS
Evaluator

T
e

xt
 E

n
c
o

d
e

r

-3.11 2.45 .56 -4.16

...

5.21 .84 -5.81 6.51

8.16 -2.51 6.25 9.15

.16 4.68 .78 2.15

4.84 9.84 -2.15 3.51

-8.27 .98 6.48 -4.54

1.47 8.48 -1.54 9.87

5.64

4.56

-2.84

2.48

.15

-5.48

1.54...

...

...

...

...

...

...-3.11 2.45 .56 -4.16

...

5.21 .84 -5.81 6.51

8.16 -2.51 6.25 9.15

.16 4.68 .78 2.15

4.84 9.84 -2.15 3.51

-8.27 .98 6.48 -4.54

1.47 8.48 -1.54 9.87

5.64

4.56

-2.84

2.48

.15

-5.48

1.54...

...

...

...

...

...

...

P
re

d
ic

to
r

P
re

d
ic

te
d

 M
e

tr
ic

(s
)

Embeddings

Evaluator

T
e

xt
 E

n
c
o

d
e

r

-3.11 2.45 .56 -4.16

...

5.21 .84 -5.81 6.51

8.16 -2.51 6.25 9.15

.16 4.68 .78 2.15

4.84 9.84 -2.15 3.51

-8.27 .98 6.48 -4.54

1.47 8.48 -1.54 9.87

5.64

4.56

-2.84

2.48

.15

-5.48

1.54...

...

...

...

...

...

...

P
re

d
ic

to
r

P
re

d
ic

te
d

 M
e

tr
ic

(s
)

Embeddings

Search Space

Preprocessing

Network to String Conversion

Autograd Graph Traversal and 

String Generation

Generated 

Autograd Graph

Forward Pass

+
Randomized Input 

Vector

1.47 8.48 1.54 9.87 1.54...

|1_Convolution|2_Relu|3... |1_Convolution|2_Relu|3_P...

Tokenizer

25 384 154 987 984...

Candidate Architectures Evaluation Optimal Architecture(s)

Ranking

Controller

Generating

Architectures

Selection

Neural Architecture Search 

SEval-NAS
Evaluator

T
e

xt
 E

n
c
o

d
e

r

-3.11 2.45 .56 -4.16

...

5.21 .84 -5.81 6.51

8.16 -2.51 6.25 9.15

.16 4.68 .78 2.15

4.84 9.84 -2.15 3.51

-8.27 .98 6.48 -4.54

1.47 8.48 -1.54 9.87

5.64

4.56

-2.84

2.48

.15

-5.48

1.54...

...

...

...

...

...

...

P
re

d
ic

to
r

P
re

d
ic

te
d

 M
e

tr
ic

(s
)

Embeddings

Figure 1: Proposed SEval-NAS methodology and its integration in a NAS pipeline

where𝑢 : R𝑘 → R is a utility function that aggregates the predicted

metrics (e.g., a weighted sum for multi-objective optimization). The

schematic of this integration is illustrated in Figure 1, highlight-

ing the closed-loop interaction between the controller, candidate

architectures, and the SEval-NAS evaluator.

This modular design ensures that SEval-NAS can be seamlessly

incorporated into existing NAS frameworks, such as FreeREA, with-

out requiring significant modifications to the search algorithm. The

flexibility of the prediction layer allows adaptation to varying num-

bers of objectives, enhancing the applicability of SEval-NAS across

diverse hardware and performance constraints.

4 Experiments and Results
We evaluated the effectiveness of SEval-NAS using two NAS bench-

marks: NATSBench [7] and HW-NAS-Bench [15]. Our evaluation fo-

cused on how well our method’s predictions correlated with actual

performance metrics. Additionally, we demonstrate the adaptability

of our approach by applying it to FreeREA. We run our experiments

on a 13th Gen Intel(R) Core(TM) 9-13900K server equipped with

NVIDIA GeForce RTX 4090.

4.1 Model Configuration
The evaluator in SEval-NAS is a transformer encoder whose input

is the neural network’s text representation and outputs the embed-

ding into a regression head for prediction. Specifically, we use the

encoder from the T5 transformer [24]. It consists of stacked layers

containing a self-attention layer and a small feed-forward network,

followed by layered normalization and a residual skip connection.

Dropout is strategically applied to the feed-forward network, the

skip connection, the attention weights, and the stack’s input and

output. We use three different sizes of T5 models :

• T5-small, which uses 8-headed attention, has only 6 layers

each in the encoder and decoder, and has roughly 60 million

parameters.

• T5-base, which uses 12-headed attention, has 12 layers each

in the encoder and decoder, and has nearly 220 million pa-

rameters.

• T5-large, which uses 16-headed attention, has 24 layers each

in the encoder and decoder, and has approximately 770 mil-

lion parameters

The predictor is a single dense layer whose number of output neu-

rons depends on the number of desired objectives.

4.2 Training
The evaluator (T5-small model) is trained to predict performance

metrics on datasets containing NNs and their reported metrics.

Other models (i.e., T5-base and T5-large) are trained and evaluated

via an ablation study (see Appendix A). In NAS, these datasets exist

as NAS benchmarks containing thousands of neural architectures

and metrics such as accuracy, latency, and FLOPS obtained from

training and inferencing those networks. Typically, these bench-

marks exclude memory usage, prompting the need for additional

profiling. To address this, we build a lookup table containing the

peak memory usage using the built-in PyTorch memory profiling

tool
1
. This tool measures the peak memory allocated to tensors

during training, providing an accurate assessment of NNs’ memory

1
torch.cuda.max_memory_allocated



SEval-NAS: A Search-Agnostic Evaluation for Neural Architecture Search SAC’26, March 23–27, 2026, Thessaloniki, Greece

footprint. The profiling is isolated from memory used by exter-

nal factors such as libraries or system variables, ensuring precise

measurement. We train our evaluator on two NAS benchmarks:

NATS-Bench [7] and HW-NAS-Bench [15].

4.3 Experiment 1: Feasibility Testing
(Evaluation on NATS-Bench)

NATS-Bench [7] is a unified benchmark dataset for searching on

both architecture topology and size. It consists of 15,625 different

architectures for the Topology Search Space (TSS) and 32,768 ar-

chitectures for the Size Search Space (SSS) evaluated on CIFAR10,

CIFAR100, and ImageNet16-120.

In the TSS, each architecture corresponds to a different cell rep-

resented as a densely connected directed acyclic graph (DAG) with

four nodes and edges corresponding to operations from a prede-

fined set of 5 operations. For each architecture in the TSS, the

cells are stacked 5 times, with output channels set to 16, 32, and

64 for three stages. The search results in a search space contain-

ing 15,625 possible architectures configured for the image dataset

considered (i.e., CIFAR-10, CIFAR-100 [13], and ImageNet16-120

[6]). The SSS searches for architectures by varying the number of

channels in each layer (convolution, cell, or block). Each architec-

ture consists of a stacked cell, and the number of channels in each

layer is selected from the set {8, 16, 24, 32, 40, 48, 56, 64}, resulting
in 32,768 architectures. For our experiment, we evaluate the TSS

and SSS. In each search space, we separately train the evaluator

on the CIFAR-10, CIFAR-100, and ImageNet16-120 architectures,

configuring our network for both (accuracy, memory) and (accuracy,
latency) bi-objective setups.

M
em

or
y

(a) CIFAR-10 (b) CIFAR-100 (c) ImageNet16-120

La
te

nc
y

(d) CIFAR-10 (e) CIFAR-100 (f) ImageNet16-120

Figure 2: Plots of predicted vs true hardware cost of NATS-
Bench TSS architectures (using T5-small) for performance
metrics reported on CIFAR-10, CIFAR-100, and ImageNet16-
120 datasets. The strength of correlation increases as 𝜏 ap-
proaches 1.

The results of the NATS-Bench TSS in Fig. 2 show a strong pos-

itive Kendall 𝜏 correlation between predicted and true values for

hardware costs. Predicted memory usage aligns closely with the

true values across all datasets. Similarly, latency predictions exhibit

a high correlation for CIFAR-10 and CIFAR-100, while ImageNet16-

120 shows a slightly weaker correlation. This suggests that SEval-

NAS effectively predicts hardware costs in the TSS space due to the

architectural features. The reason why the SEval-NAS effectively

predicts hardware costs in the TSS in Fig. 2 is due to the Auto-

grad Traversal and String Generation block, which significantly

optimizes the neural architecture in topology.

M
em

or
y

(a) CIFAR-10 (b) CIFAR-100 (c) ImageNet16-120

La
te

nc
y

(d) CIFAR-10 (e) CIFAR-100 (f) ImageNet16-120

Figure 3: Plots of predicted vs true hardware cost of NATS-
Bench SSS architectures (using T5-small) for performance
metrics reported on CIFAR-10, CIFAR-100, and ImageNet16-
120 datasets. The strength of correlation increases as 𝜏 ap-
proaches 1.

For the NATS-Bench SSS results illustrated in Fig. 3, predicted

memory usage again shows a strong positive correlation with the

true values across all datasets. Predicted latency has a similar trend

with a strong correlation in CIFAR-10 and CIFAR-100. However,

latency prediction for the ImageNet16-120 dataset appears less ro-

bust, with noticeable variance. In terms of predicted latency on

SSS across CIFAR-10, CIFAR-100, and ImageNet16-120 in Fig. 2.

From the dataset itself, especially ImageNet16-120 compared to

CIFAR-100 and CIFAR-10, we know ImageNet16-200 emphasizes

low-resolution feature extraction; thus, ImageNet16-120 is reli-

able for memory predictions but unstable for latency prediction.

Whereas CIFAR-100 and CIFAR-10 are designed for fine-grained

classification, which results in good reliability on both memory

predictions and latency memory. Therefore, while SEval-NAS re-

mains reliable for memory predictions, its reliability in predicting

latency is dataset-dependent and influenced by the variability of

the architectures.

In comparison, while positively correlated, accuracy predictions

in Fig. 4 exhibit weaker correlations than those for hardware costs.

This suggests that SEval-NAS struggles to confidently infer accu-

racy from neural architecture representations. Furthermore, there is

no trend linking dataset type to prediction reliability for accuracy,

highlighting that accuracy depends on factors beyond straight-

forward architectural features. Overall, SEval-NAS demonstrates

stronger predictability for hardware metrics than accuracy, primar-

ily because hardware costs are directly tied to architectural char-

acteristics. For example, more convolutional filters in a network



SAC’26, March 23–27, 2026, Thessaloniki, Greece Atah Nuh Mih, Jianzhou Wang, Truong Thanh Hung Nguyen, and Hung Cao

(a) NATS-Bench TSS (b) NATS-Bench SSS

Figure 4: Kendall’s 𝜏 correlation for predicted vs true accu-
racy in NATS-Bench TSS and SSS search spaces. Comparison
includes both (accuracy, latency) and (accuracy, memory) bi-
objectives.

will need more computation than fewer convolutional filters [22].

Meanwhile, this correlation cannot be directly made for accuracy.

We also conducted an experiment (Appendix A) to evaluate three

different encoder/decoder models (T5-small, T5-base, and T5-large)

on NATS-Bench SSS and NATS-Bench TSS. This ablation study

compared how model size affects the correlation between predicted

versus true memory and predicted versus true latency, as measured

by Kendall correlation.

The results from our extra ablation studies (Fig. 6 in Appendix

A.1) showed that T5-small, T5-base, and T5-large perform similarly

on the TSS benchmark. However, we observed that only T5-large

encoders exhibit lower Kendall 𝜏 correlations on the SSS. Addi-

tionally, we found that different encoder sizes (Appendix A.2) do

not significantly impact performance on NATS-Bench TSS for ei-

ther memory or latency correlations (Fig. 7). In contrast, T5-large

demonstrates weaker 𝜏 correlations for both memory and latency

predictions on NATS-Bench SSS, as shown in Fig. 8.

4.4 Experiment 2: Predicting Hardware Cost
(Evaluation on HW-NAS-Bench)

Although we observe a strong positive latency correlation in the

NATS-Bench search spaces, the latency of a NN largely depends

on the hardware environment. To investigate how well SEval-NAS

would theoretically predict latency across various hardware devices,

we evaluate its performance on HW-NAS-Bench.

HW-NAS-Bench [15] was designed for hardware-aware NAS.

It includes two NAS search space designs: NAS-Bench-201’s cell-

based search space and FBNet’s search space. The dataset provides

the hardware cost of the NNs from both search spaces on commer-

cial devices, including Edge GPU, Edge TPU, ASIC Eyeriss, FPGA,

Pixel 3, and Raspberry Pi 4. FBNet search space [30] builds a layer-

wise search space with a fixed macro-architecture and varying

middle layers that can be searched. The architectures in this search

space have regular structures that include nine cell candidates and

22 positions, yielding 9
22 ≈ 10

21
different architectures. Due to the

excessively large size of the search space, we do not use it in our

experiment. NAS-Bench-201 search space [8] is the original search

space of the TSS architectures in NATS-Bench. It contains the same

15,625 architectures with results reported for CIFAR-10, CIFAR-100,

and ImageNet16-120 and their hardware costs on each of the six

devices. We evaluate SEval-NAS on the HW-NAS-Bench’s NAS-

Bench-201 subspace for values reported on the CIFAR-10 dataset.

The evaluator is trained to predict only latency, testing the perfor-

mance of SEval-NAS on a single objective metric.

(a) Edge GPU (b) Edge TPU (c) ASIC Eyeriss

(d) FPGA (e) Pixel 3 (f) Raspberry Pi 4

Figure 5: Plots of predicted vs true latency for NAS-Bench-
201 architectures with T5-small encoder for 6 edge devices
reported in the HW-NAS-Bench benchmark. The strength of
correlation increases as 𝜏 approaches 1.

Results in Fig. 5 show a strong positive Kendall 𝜏 correlation

for most edge devices, with values ranging from 0.6047 to 0.9742,

demonstrating SEval-NAS’s ability to predict latency across six

different edge devices. The Edge TPU’s latency predictions stand

out as an outlier, showing a weaker correlation (𝜏 = 0.6047). This

is attributed to negative latency values reported in the HW-NAS-

Bench dataset, which likely affected the model’s ability to predict

latency in this case. Despite this, other devices, such as the Edge

GPU (𝜏 = 0.8676), Eyeriss (𝜏 = 0.9558), FPGA (𝜏 = 0.9742), Pixel

3 (𝜏 = 0.8599), and Raspi4 (𝜏 = 0.8659), exhibit strong correla-

tions, indicating consistent and reliable performance across diverse

hardware configurations.

Both experiments show that training the evaluator for bi-objectives

in NATS-Bench and a single objective in HW-NAS-Bench consis-

tently yielded positive Kendall 𝜏 correlation values. This demon-

strates the effectiveness of SEval-NAS in adapting to different num-

bers of evaluation objectives, further solidifying its strength as a

predictive method for latency across edge devices.

We also conduct the additional experiments (in Appendix A.3)

to run three different encoder/decoder models: T5-small (Fig. 5),

T5-base (Fig. 9), and T5-large (Fig. 10) on HW-NAS-Bench as an

ablation study of comparison of model size on the predicted latency

vs true latency.

We observe that different encoder/decoder models do not have

great impact (less than 0.02 latency correlation difference) except

that T5-base in Edge GPU (0.8804) and T5-large in Edge GPU

(0.8852) have stronger latency correlation than T5-small in Edge

GPU(0.8434) since T5-small’s operators are smaller, which results in

GPU kernel launching overhead accounting for a higher proportion

of the total latency. Moreover, T5-large and T5-base have longer

latency, the relative impact of noise is smaller, which leads to a

higher latency correlation.



SEval-NAS: A Search-Agnostic Evaluation for Neural Architecture Search SAC’26, March 23–27, 2026, Thessaloniki, Greece

Table 1: Test accuracy and time for various NAS algorithms
for NATS-Bench.

CIFAR 10 CIFAR 100 ImageNet16-120
Algorithm Accuracy Time (s) Accuracy Time (s) Accuracy Time (s)

NASWOT (1000) 93.10 ± 0.31 248 69.10 ± 1.61 248 45.08 ± 1.55 248

TENAS 93.90 ± 0.47 1558 71.24 ± 0.56 1558 42.38 ± 0.46 1558

NASI 93.55 ± 0.10 120 71.20 ± 0.14 120 44.84 ± 1.41 120

GA-NINASWOT 93.70 ± 0.63 206 71.57 ± 1.37 206 45.18 ± 2.05 206

EPE-NAS 91.31 ± 1.69 104 69.58 ± 0.83 104 41.84 ± 2.06 104

FreeREA 94.36 ± 0.00 45 73.51 ± 0.05 45 46.34 ± 0.00 45

FreeREA + Latency 94.36 ± 0.00 77 73.51 ± 0.00 82 46.34 ± 0.00 81

FreeREA + Memory 84.21 ± 14.91 34 49.67 ± 11.35 37 19.66 ± 7.19 38

4.5 Experiment 3: Ease of Integration (Evaluator
in a NAS)

The contrast in correlation values observed between accuracy (low

and moderate correlation) and hardware costs (strong correlation)

highlights the evaluator’s strength as a hardware cost predictor.

This strength can be effectively leveraged to enhance NAS ap-

proaches that traditionally optimize accuracy as a single objective

by incorporating hardware constraints into their search strategies.

To demonstrate this applicability, we integrate SEval-NAS into

FreeREA [2] to search in the NATS-Bench search space and define

hardware constraints for the search. FreeREA uses evolutionary

search to find candidate architectures and evaluates the candidate

architecture using a training-free metric to estimate the accuracy

performance.

FreeREA algorithm onNATS-Bench TSS is constrained by 𝐹𝐿𝑂𝑃𝑆

and #𝑃𝑎𝑟𝑎𝑚𝑠 . Since FLOPS is a poor proxy for hardware costs [15,

29], we replace it with two alternative constraints: 1) latency and 2)

memory usage, each tested separately. For each metric, the mean

value reported in the benchmark is set as the threshold for ranking

candidate architectures. For example, these cases use the mean

latency (45.96 seconds) and memory usage (166.67 MB) from the

NATS-Bench CIFAR-10 dataset as thresholds. The resulting perfor-

mance is compared against FreeREA and other training-free NAS

algorithms reported in [2], with findings summarized in Table 1.

Latency-constrained search identified an average of approxi-

mately 230 architectures satisfying the threshold, achieving final

average accuracies consistent with those reported in the original

FreeREA study. In contrast, the memory-constrained search discov-

ered fewer architectures (on average, fewer than 10) that met the

threshold, indicating a bias in the search algorithm against low-

memory architectures. This smaller pool of candidates led to higher

variability in test accuracies due to the diverse performance of low-

memory architectures. Importantly, while the latency-constrained

search doubled FreeREA’s search time, this overhead from evaluator

inference remained negligible compared to other NAS algorithms.

Conversely, the memory-constrained search required less time due

to the limited number of viable candidate architectures.

These results highlight the flexibility of SEval-NAS for hardware

cost evaluation while making minimal changes to the algorithm.

By integrating additional constraints (e.g., latency and memory

thresholds), the NAS algorithm can be tailored to select candidate

architectures suitable for target hardware devices. For instance,

deploying SEval-NAS on an edge device with memory constraints

matching the device’s operating range would yield architectures

suitable for deployment. This study establishes the feasibility of in-

corporating SEval-NAS into NAS pipelines, with the specific objec-

tive of demonstrating integration viability rather than algorithmic

optimization. The investigation of threshold parameter effects on

search dynamics represents a natural extension of this foundational

work and constitutes a promising direction for future research.

5 Conclusion and Future Work
NAS discovers novel architectures without expert knowledge, but

suffers from extensive evaluation times when training or deploy-

ing architectures. We proposed SEval-NAS, which converts neural

architectures to string representations via autograd graph traver-

sal, then maps embeddings to predicted performance metrics. We

evaluated SEval-NAS using two NAS benchmarks: NATS-Bench

and HW-NATS-Bench, focusing on accuracy, latency, and memory.

Our experimental results demonstrated that latency and memory

predictions correlate best, indicating SEval-NAS’s strength as a

hardware cost predictor. However, its accuracy predictions showed

moderate correlation, reflecting limitations in its ability to evaluate

accuracy effectively. Our ablation studies on different sizes of en-

coder/decoder models on NATS-Bench andHW-NATS-Bench found

that the larger the encoder, the lower the Kendall 𝜏 correlations

on the NATS-Bench SSS. In terms of Hardware testing on HW-

NATS-Bench, the experiment indicates a larger encoder/decoder

model, stronger latency correlation in Edge GPU due to kernel

operator, and longer latency. To test the adaptability of SEval-NAS,

we incorporated it into FreeREA [2], adding latency and memory

constraints to the search. The results showed that SEval-NAS had

a low impact on search time and facilitated adding new evaluation

criteria for selecting candidate architectures with minimal changes

to the algorithm. These findings also showed that SEval-NAS can

complement training-free NAS focused on predicting accuracy, pro-

viding a comprehensive evaluation of candidate architectures for

diverse performance metrics.

Our experiments relied on hardware metrics reported in the re-

spective NAS benchmarks, which may not accurately reflect the ac-

tual values if run on the devices. This shortcoming can be addressed

by designing an on-device NAS with a lightweight SEval-NAS to

evaluate candidate architectures. This enhancement and exploring

additional thresholds in FreeREA are left as a direction for future

work.

Acknowledgement
This work has been supported by NSERC Discovery Grant No

RGPIN 2025-00129.

References
[1] Bowen Baker et al. 2018. Accelerating neural architecture search using perfor-

mance prediction. In International Conference on Learning Representations.
[2] Niccoì O Cavagnero et al. 2023. Freerea: training-free evolution-based architec-

ture search. In IEEE/CVF Winter Conference on Applications of Computer Vision
(WACV), 1493–1502.

[3] Angelica Chen et al. 2023. Evoprompting: language models for code-level

neural architecture search. Advances in Neural Information Processing Systems,
36, (Dec. 2023).



SAC’26, March 23–27, 2026, Thessaloniki, Greece Atah Nuh Mih, Jianzhou Wang, Truong Thanh Hung Nguyen, and Hung Cao

[4] Wuyang Chen et al. 2021. Neural architecture search on imagenet in four

gpu hours: a theoretically inspired perspective. In International Conference on
Learning Representations.

[5] Krishna Teja Chitty-Venkata et al. 2023. Neural architecture search benchmarks:

insights and survey. IEEE Access, 11, 25217–25236.
[6] Patryk Chrabaszcz et al. 2017. A downsampled variant of imagenet as an

alternative to the cifar datasets. (2017). arXiv: 1707.08819 [cs.CV].
[7] Xuanyi Dong et al. 2022. Nats-bench: benchmarking nas algorithms for archi-

tecture topology and size. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44, (July 2022), 3634–3646, 7, (July 2022).

[8] Xuanyi Dong and Yi Yang. 2020. Nas-bench-201: extending the scope of re-

producible neural architecture search. In International Conference on Learning
Representations.

[9] Yanjie Gao et al. 2020. Estimating gpu memory consumption of deep learning

models. ESEC/FSE 2020 - Proceedings of the 28th ACM Joint Meeting European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, 20, (Nov. 2020), 1342–1352. isbn: 9781450370431. doi:10.1145/3368
089.3417050.

[10] Mohamed Imed Eddine Ghebriout et al. 2024. Harmonic-nas: hardware-aware

multimodal neural architecture search on resource-constrained devices. In

Asian Conference on Machine Learning. PMLR, 374–389.

[11] Amir Gholami et al. 2018. Squeezenext: hardware-aware neural network design.

In Proceedings of the IEEE conference on computer vision and pattern recognition
workshops, 1638–1647.

[12] Minghao Guo et al. 2019. Irlas: inverse reinforcement learning for architecture

search. In Proceedings of the IEEE conference on computer vision and pattern
recognition.

[13] Alex Krizhevsky andGeoffreyHinton. 2009. Learningmultiple layers of features

from tiny images.

[14] Achintya Kundu et al. 2023. Transfer-once-for-all: ai model optimization for

edge. IEEE International Conference on Edge Computing and Communications
(EDGE). isbn: 9798350304831. doi:10.1109/EDGE60047.2023.00017.

[15] Chaojian Li et al. 2021. Hw-nas-bench:hardware-aware neural architecture

search benchmark. ICLR 2021 - 9th International Conference on Learning Repre-
sentations, (Mar. 2021).

[16] Yuke Li et al. 2023. Pareto optimization of cnn models via hardware-aware neu-

ral architecture search for drainage crossing classification on resource-limited

devices. Proceedings of the SC ’23 Workshops of The International Conference
on High Performance Computing, Network, Storage, and Analysis, (Nov. 2023),
1767–1775. isbn: 9798400707858. doi:10.1145/3624062.3624258.

[17] Chenxi Liu et al. 2018. Progressive neural architecture search. In European
Conference on Computer Vision (ECCV).

[18] Renqian Luo et al. 2021. Neural architecture optimization. InNeural Information
Processing Systems. https://github.com/renqianluo/NAO..

[19] Xiangzhong Luo et al. 2020. Edgenas: discovering efficient neural architectures

for edge systems. Proceedings - IEEE International Conference on Computer
Design: VLSI in Computers and Processors, 2020-October, (Oct. 2020), 288–295.

[20] Bo Lyu et al. 2022. Resource-constrained neural architecture search on edge

devices. IEEE Transactions on Network Science and Engineering, 9, 1.
[21] Joe Mellor et al. 2021. Neural architecture search without training. In Interna-

tional conference on machine learning. PMLR, 7588–7598.

[22] Atah Nuh Mih et al. 2024. Achieving Pareto Optimality using Efficient Pa-

rameter Reduction for DNNs in Resource-Constrained Edge Environment.

Proceedings of the Canadian Conference on Artificial Intelligence, (May 2024).

https://caiac.pubpub.org/pub/2gh9r4xc.

[23] Hieu Pham et al. 2018. Efficient neural architecture search via parameters

sharing. In International conference on machine learning. PMLR.

[24] Colin Raffel et al. 2020. Exploring the limits of transfer learning with a unified

text-to-text transformer. Journal of machine learning research, 21, 140, 1–67.
[25] Esteban Real et al. 2019. Regularized evolution for image classifier architecture

search. Proceedings of the AAAI Conference on Artificial Intelligence.
[26] Pengzhen Ren et al. 2021. A comprehensive survey of neural architecture

search: challenges and solutions. ACM Computing Surveys (CSUR), 54, 4, 1–34.
[27] Blake Richey et al. 2024. Multi-reward optimization using genetic algorithms

for edge ai. In Real-Time Image Processing and Deep Learning 2024. SPIE.
[28] Matteo Risso et al. 2022. Lightweight neural architecture search for temporal

convolutional networks at the edge. doi:10.1109/TC.2022.3177955.

[29] Nilotpal Sinha et al. 2024. Hardware aware evolutionary neural architecture

search using representation similarity metric. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision (WACV), 2628–2637.

[30] Bichen Wu et al. 2019. Fbnet: hardware-aware efficient convnet design via

differentiable neural architecture search. In IEEE/CVF conference on computer
vision and pattern recognition.

[31] Lingxi Xie and Alan Yuille. 2017. Genetic cnn. In International Conference on
Computer Vision. IEEE.

[32] Li Lyna Zhang et al. 2021. Towards accurate latency prediction of deep-learning

model inference on diverse edge devices. In International Conference on Mobile
Systems, Applications, and Services. ACM.

[33] Yusen Zhang et al. 2024. Oncenas: discovering efficient on-device inference

neural networks for edge devices. Information Sciences.
[34] Barret Zoph et al. 2018. Learning transferable architectures for scalable image

recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, 8697–8710.

[35] Barret Zoph and Quoc Le. 2017. Neural architecture search with reinforcement

learning. In International Conference on Learning Representations.

A Appendix
A.1 Ablation Study 1: Evaluation among

different T5 encoders across Bi-Objective
Setups)

(a) NATS-Bench TSS (b) NATS-Bench SSS

Figure 6: Kendall’s 𝜏 correlation for predicted vs true accu-
racy among encoders of T5-small, T5-base, and T5-large on
NATS-Bench TSS and NATS-Bench SSS (accuracy, latency)
and (accuracy, memory) bi-objectives.

A.2 Ablation Study 2: Feasibility Testing
(Evaluation on NATS-Bench) on Different
Encoders

M
em

or
y

(a) T5-small (b) T5-base (c) T5-large

La
te

nc
y

(d) T5-small (e) T5-base (f) T5-large

Figure 7: Plots of predicted vs true hardware cost of NATS-
BenchTSS architectures for performancemetrics reported on
T5-small, T5-base, and T5-large. The strength of correlation
increases as 𝜏 approaches 1.

https://arxiv.org/abs/1707.08819
https://doi.org/10.1145/3368089.3417050
https://doi.org/10.1145/3368089.3417050
https://doi.org/10.1109/EDGE60047.2023.00017
https://doi.org/10.1145/3624062.3624258
https://github.com/renqianluo/NAO.
https://doi.org/10.1109/TC.2022.3177955


SEval-NAS: A Search-Agnostic Evaluation for Neural Architecture Search SAC’26, March 23–27, 2026, Thessaloniki, Greece
M

em
or

y

(a) T5-small (b) T5-base (c) T5-large

La
te

nc
y

(d) T5-small (e) T5-base (f) T5-large

Figure 8: Plots of predicted vs true hardware cost of NATS-
Bench SSS architectures for performancemetrics reported on
T5-small, T5-base, and T5-large. The strength of correlation
increases as 𝜏 approaches 1.

A.3 Ablation Study 3: Predicting Hardware Cost
(Evaluation on HW-NAS-Bench) on
Different Encoders

(a) Edge GPU (b) Edge TPU (c) ASIC Eyeriss

(d) FPGA (e) Pixel 3 (f) Raspberry Pi 4

Figure 9: Plots of predicted vs true latency for NAS-Bench-
201 architectures with T5-base encoder for 6 edge devices
reported in the HW-NAS-Bench benchmark. The strength of
correlation increases as 𝜏 approaches 1.

(a) Edge GPU (b) Edge TPU (c) ASIC Eyeriss

(d) FPGA (e) Pixel 3 (f) Raspberry Pi 4

Figure 10: Plots of predicted vs true latency for NAS-Bench-
201 architectures with T5-large encoder for 6 edge devices
reported in the HW-NAS-Bench benchmark. The strength of
correlation increases as 𝜏 approaches 1.


	Abstract
	1 Introduction
	2 Literature Review
	2.1 Training-Free NAS
	2.2 Hardware-Aware NAS
	2.3 NAS as a String Search Problem

	3 Methodology
	3.1 Net-to-String Conversion
	3.2 Evaluator
	3.3 Integration into NAS Pipeline

	4 Experiments and Results
	4.1 Model Configuration
	4.2 Training
	4.3 Experiment 1: Feasibility Testing (Evaluation on NATS-Bench)
	4.4 Experiment 2: Predicting Hardware Cost (Evaluation on HW-NAS-Bench)
	4.5 Experiment 3: Ease of Integration (Evaluator in a NAS)

	5 Conclusion and Future Work
	A Appendix
	A.1 Ablation Study 1: Evaluation among different T5 encoders across Bi-Objective Setups)
	A.2 Ablation Study 2: Feasibility Testing (Evaluation on NATS-Bench) on Different Encoders
	A.3 Ablation Study 3: Predicting Hardware Cost (Evaluation on HW-NAS-Bench) on Different Encoders


