SEval-NAS: A Search-Agnostic Evaluation
for Neural Architecture Search

Atah Nuh Mih

Analytics Everywhere Lab,
University of New Brunswick
Fredericton, Canada
atah.mih@unb.ca

Truong Thanh Hung Nguyen
Analytics Everywhere Lab,
University of New Brunswick
Fredericton, Canada
hung.ntt@unb.ca

Abstract

Neural architecture search (NAS) algorithms have automated the
discovery of new neural networks by generating candidate architec-
tures that meet desired criteria. Evaluating these candidate architec-
tures is often hardcoded into the algorithms, making it challenging
to adopt new evaluation criteria without significantly changing
the algorithm. This inflexibility is especially evident in hardware-
aware NASs whose search objectives are tailored for hardware
such as edge devices. To overcome this challenge, we propose a
metric-evaluation mechanism called SEval-NAS that converts neu-
ral networks to strings, obtains their vector representation, and
predicts the evaluation metric. We experimented on two NAS bench-
marks: NATS-Bench and HW-NAS-Bench, evaluating the neural
architectures on accuracy, latency, and memory. By comparing
Kendall’s 7 correlation coefficients in these experiments, the results
showed that latency and memory predictions had stronger correla-
tions than accuracy, indicating SEval-NAS’ suitability as a hardware
cost predictor. We further investigated the feasibility of integrating
SEval-NAS in an existing NAS algorithm by evaluating candidate
architectures in FreeREA on metrics not originally included. The
results showed that our method successfully ranked architectures
generated by FreeREA, did not drastically affect search time, and
did not require significant changes to the search algorithm.

CCS Concepts

« Computing methodologies — Neural networks; Search method-
ologies; » Theory of computation — Network optimization.

Keywords

Neural architecture search, network optimization

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SAC’26, Thessaloniki, Greece

© 2026 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-X-XXXX-XXXX-X/26/03

https://doi.org/XXXXXXX.XXXXXXX

Jianzhou Wang
Analytics Everywhere Lab,
University of New Brunswick
Fredericton, Canada
maxwell. wang@unb.ca

Hung Cao
Analytics Everywhere Lab,
University of New Brunswick
Fredericton, Canada
hcao3@unb.ca

ACM Reference Format:

Atah Nuh Mih, Jianzhou Wang, Truong Thanh Hung Nguyen, and Hung
Cao. 2026. SEval-NAS: A Search-Agnostic Evaluation for Neural Archi-
tecture Search. In Proceedings of The 41st ACM/SIGAPP Symposium on
Applied Computing (SAC’26). ACM, New York, NY, USA, 9 pages. https:
//doi.org/XXXXXXX.XXXXXXX

1 Introduction

Neural architecture search (NAS) was developed to automate the
design of neural networks (NNs), addressing the knowledge gap
required to design these networks manually. Traditional NAS [35]
used reinforcement learning (RL) to generate variable-length strings
representing architectures, achieving state-of-the-art performance
but at high computational cost. This shortcoming prompted re-
search into more efficient search methods, such as a cell-based
search space with learnable transferable architectures [34], Efficient
NAS (ENAS) [23], Progressive NAS (PNAS) [17], and Regularized
Evolution for Image Classifier Architecture Search [25]. In gen-
eral, NAS is divided into five major components: (1) the search
space containing predefined operation sets; (2) the controller that
determines how neural architectures are generated; (3) the can-
didate architecture(s) generated; (4) the evaluation phase with a
strategy for assessing architectures feasibility; and (5) the optimal
architecture(s) that satisfy search objectives.

The evaluation phase is one of the most critical steps in NAS. It
evaluates the performance of candidate architecture(s) for desired
objectives and guides the search algorithm towards an optimal
architecture [5]. Depending on the evaluation method used, this
phase could pose a significant search cost to the NAS approach
since all the candidate architectures are trained and tested to assess
their performance [2]. For example, [34] trained each candidate
architecture till convergence on proxy data to obtain its evalua-
tion metrics, resulting in a search cost of 22,400 GPU hours. The
shortcomings of full training motivated incomplete training to ac-
celerate the ranking of candidate architectures, thereby reducing
search costs [26]. Another challenge with existing NAS approaches
is the inflexibility of accommodating new evaluation metrics. Differ-
ent NAS approaches aim to find architectures that satisfy different
performance criteria. For example, various hardware-aware NAS

https://orcid.org/0000-0002-6750-9536
https://orcid.org/0000-0002-0788-4377
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

SAC’26, March 23-27, 2026, Thessaloniki, Greece

(HW-NAS) algorithms include hardware cost metrics such as la-
tency [29, 30, 10] and memory [16] to select candidate architectures
suitable for hardware platforms such as edge devices. Thus, the
evaluation criteria are hardcoded into the search design of NAS
algorithms, making it challenging to adopt new evaluation metrics
without re-designing the search. Therefore, an evaluation mecha-
nism that is independent of the search algorithm and can be flexibly
adapted to any NAS approach is necessary.

To address these challenges, we propose a search-agnostic evalu-
ation approach called SEval-NAS. It converts any NN into its string
representation, encodes the string to obtain the vector embedding,
and predicts the evaluation metrics. This is based on the premise
that NNs’ performance reflects the structural dependencies of their
internal operations (e.g., type of convolution, number of filters, type
of activations). Extracting this structural information can, therefore,
help predict their given performance. We show that SEval-NAS
supports different types of metrics and evaluation objectives and
can be directly applied to an existing NAS method with minimal
changes to the search algorithm and without significantly affecting
the search. We experiment on two NAS benchmarks: NATS-Bench
[7] and HW-NAS-Bench [15] for accuracy, latency, and memory,
and further assess how our method affects a NAS algorithm (i.e.,
FreeREA [2]).

In summary, this work presents the following contributions:

o A network-to-string conversion mechanism that traverses
the autograd graph of any NN and generates its textual rep-
resentation, making it adaptive to all types of NNs.

e An encoder-predictor network (i.e., an evaluator) that ex-
tracts meaningful relationships between the strings and their
evaluation metric. This network can be designed to include
any evaluation metric (notably hardware costs) and any num-
ber of evaluation objectives.

o SEval-NAS that is independent of the NAS algorithm and
combines the network-to-string conversion mechanism and
the evaluator to evaluate candidate architectures in NAS.

e An ablation study of three different encoder/decoder mod-
els (T5-small, T5-base, and T5-large) in SEval-NAS on NAS
benchmarks.

2 Literature Review

This section discusses the most relevant works related to training-
free NAS, HW-NAS, and NAS as a string search problem, highlight-
ing the gaps that motivated our approach.

2.1 Training-Free NAS

The costly evaluation of candidate architectures has motivated the
development of training-free metrics that evaluate candidate archi-
tectures and reduce the search time of NAS. [1] proposed regression
models to predict the final performance of models from learning
curve trajectories based on features obtained from the neural ar-
chitectures, hyperparameters, and time-series measurements. [21]
proposed NASWOT, which examines the correlation of activations
between data points in untrained NNs and scores networks based
on the binary codes corresponding to this correlation. [4] proposed
TE-NAS, a training-free NAS that analyzes the spectrum of the
neural tangent kernel (NTK) and the number of linear regions to

Atah Nuh Mih, Jianzhou Wang, Truong Thanh Hung Nguyen, and Hung Cao

rank candidate architectures. While these methods successfully ad-
dress the evaluation of candidate architectures, they solely focus on
accuracy as their performance metrics. We extend beyond accuracy
alone by including hardware metrics to assess the suitability of
architectures for different computing environments.

Hardware cost predictors have been developed, such as a nn-
Meter [32], a latency predictor for edge devices; and a GPU esti-
mator for deep learning models [9]. Integrating different single-
purpose cost predictors will increase the complexity of the design,
so we propose a multi-purpose cost estimator that can incorporate
different hardware costs.

2.2 Hardware-Aware NAS

The search for good neural architectures extends beyond just high-
accuracy networks. In cases where the hardware environment is
crucial, cost metrics must be considered when evaluating the NNs.
This requirement gave rise to HW-NAS, which includes a hard-
ware cost metric and test accuracy in evaluating candidate archi-
tectures. Several HW-NAS approaches have been proposed, such
as SqueezeNext [11], IRLAS [12], and FB-Net [30]. These works
only provide the optimal architectures obtained from the search,
leaving a question about their performance if the search were to be
evaluated differently.

Hardware-aware NAS equally targets edge devices because their
hardware environments require NNs suitable for their resource
constraints. Several NAS methods have been developed for edge
devices [14, 29, 20, 28]. While these works have been successful
in searching optimized NN, they are usually designed to satisfy
a single hardware cost metric. Latency has often been used as the
evaluation metric in hardware-aware NAS [19, 33, 10, 16], whereas
few works include multiple cost metrics in their design [27].

These NAS methods are generally multi-objective and aim to
satisfy more than one primary objective pre-defined while design-
ing the search. Our approach provides an easy integration of a
cost evaluator for any desired objective (e.g., accuracy, latency, and
memory) and several objectives (e.g., single or bi-objectives).

2.3 NAS as a String Search Problem

NAS as a string search problem was proposed in the earliest NAS
work [34], where a variable-length string specifies the search space,
and a recurrent NN (i.e., controller) is used to generate such a string
using RL. GeNet [31] adopted a similar approach, representing net-
work structures as fixed-length binary strings and using genetic
algorithms to generate new architectures. [18] proposed Neural
Architecture Optimization (NAO) to find candidate networks us-
ing an encoder, a predictor, and a decoder network to perform the
search. The encoder maps the architectures to a continuous vector
space, the predictor approximates the classification accuracy, and
the decoder attempts to reconstruct the architecture. They directly
optimize the predictor by searching the embedding of neural archi-
tectures to derive the best architectures. Like other NAS methods,
the optimization is close-knit, with a prediction built into the search
itself. Contrary to this, our prediction mechanism is plug-and-play
and can complement existing NAS. We also expand the prediction
to include hardware costs, which is crucial to HW-NAS. A more

SEval-NAS: A Search-Agnostic Evaluation for Neural Architecture Search

recent EVOPROMPTING [3] uses language modeling and prompt-
ing for code-level NN generation. This approach, however, is very
high-level as it generates programming code.

3 Methodology

Our proposed SEval-NAS framework is designed to evaluate neural
architectures within a NAS pipeline by leveraging a formalized
string-based representation and a predictive evaluation model. Let
A denote the set of candidate neural architectures, where each
architecture a € A is characterized by its computational graph.
The methodology transforms each architecture into a standard-
ized string representation, which is subsequently processed by an
evaluator to predict performance metrics. The predicted metrics
guide the NAS controller in optimizing the search process. The
framework consists of two primary components: (1) a network-
to-string conversion mechanism and (2) an evaluator network for
performance prediction. Fig. 1 provides a schematic of the proposed
methodology, illustrating its integration within a NAS pipeline.

3.1 Net-to-String Conversion

The network-to-string conversion process maps a neural architec-
ture a € A to a string representation s, € S, where S is the space
of all possible string representations. Let G, = (V,, E;) represent
the computational graph of architecture a (generated during the
forward pass), with vertices V, corresponding to operations (e.g.,
convolution, pooling, ReLU) and edges E, representing data flow
between operations. The conversion function f : A — S traverses
G, (breadth-first) to extract structural and operational details, yield-
ing a string s, that encapsulates the architecture’s configuration.

Formally, the conversion process is defined as: s, = f(G,), where
f systematically traverses V, and E, to encode operations and their
connectivity into a standardized format. The resulting string s, is
tokenized into a sequence of tokens T, = {f1, t, . .., t, }, where each
token ¢; corresponds to a specific operation or parameter in the
computational graph. This tokenization ensures a universal and
consistent representation, enabling compatibility across diverse
NAS tasks and datasets. The conversion is described in Algorithm
1.

3.2 Evaluator

The tokenized input is processed in the evaluator module to pre-
dict its performance metrics. The evaluator module, denoted as &,
predicts performance metrics for a given architecture based on its to-
kenized representation T,. Let M = {mj, my, ..., m;} represent the
set of target performance metrics (e.g., accuracy, latency, memory
usage). The evaluator maps the tokenized input to a vector of pre-
dicted metrics: i, = E(T,), where i, = [fg1, Maa, ..., Mgk € Rk
denotes the predicted values for the k metrics.

The module consists of two components: an encoder and a pre-
dictor.

(1) Encoder: The encoder extracts a high-dimensional vector
representation of the architecture, capturing its structural
and contextual information. It is represented by a function
g: T — R that transforms the tokenized sequence T, into
a high-dimensional embedding e, € R?, capturing structural

SAC’26, March 23-27, 2026, Thessaloniki, Greece

Algorithm 1 Network to String Conversion

Input: Neural Network: net,; Input Tensor: inp
Output: Output token T,

1: G4 «— netg(inp) > forward pass

2: node = G, (root) > root node

3 Sq =0 > output string

4: seen =@ > keep track of traversal

5. node_id =0 > node index

6: function GET_STRING(node)

7: if node in seen then return

8: end if

9: seen «— node

10: next_nodes = node.next_functions > neighbouring
vertices

11: for u in next_nodes do

12: GET_STRING(u)

13: end for

14: vars = node.variable > get operations and variables

15: name = node.name

16: Sq «— name, node_id, vars

17: end function

18: T, = tokenize(s,) > tokenization with any desired method

and contextual features of the architecture:

€q = g(Ta)

The encoder employs a transformer-based architecture to
model dependencies within the token sequence, ensuring
robust feature extraction.

(2) Predictor: A function h : R? — R¥ that maps the embed-
ding e, to the predicted metrics:

g = h(ey).

The prediction layer is a fully connected neural network
with k output neurons, where the number of neurons corre-
sponds to the number of target metrics. For single-objective
prediction (e.g., latency), k = 1, while for multi-objective
prediction (e.g., accuracy and latency), k > 2.

N
i=1°
m; € R¥ are the true performance metrics for architecture a;. The
training objective minimizes the loss function:

The evaluator is trained on a dataset D = {(a;, m;)};.,, where

N
1
L= Z £(E(Ty,).m),
where ¢ is a regression loss (e.g., mean squared error) that measures
the discrepancy between predicted and true metrics.

3.3 Integration into NAS Pipeline

The SEval-NAS framework is integrated into a NAS pipeline by
evaluating candidate architectures generated by the controller. Let
C denote the controller, which generates architectures a € A based
on a search strategy. The evaluator provides feedback in the form
of predicted metrics ri,, enabling the controller to optimize the
search objective:
a* = arg max u(my),
aeA

SAC’26, March 23-27, 2026, Thessaloniki, Greece

Atah Nuh Mih, Jianzhou Wang, Truong Thanh Hung Nguyen, and Hung Cao

Ranking

Neural Architecture Search

Controller

@

Search Space
>
b N &
&< % S
% ,gr/ .&, &\ b7
X‘r\ b7)«\

Candidate Architectures

Evaluation

S
DN

Optimal Architecture(s)
a®
By =

a— — —
— — — S —
(Network to String Conversion R S Eva I'NAS
NS s—) Autograd Graph Traversal and} (" Evaluator)
i String Generation| Preprocessing @
q@ | = [Rz { | 1_Convolution|2_Relu|3_P...] S ©
] O 25 = =
d‘m ! i ‘ Tokenizer é = = — '8 g
- —_—
Y (IR=="l-ec=cRaniy
1 =< 827 a54) - [(sas o 5
! > 5
P x:;e - u | = 2
- } N / &
—————————— Mector " Generated i L Embeddings —\
Autograd Graph : _ J
W J

Figure 1: Proposed SEval-NAS methodology and its integration in a NAS pipeline

where u : R — R s a utility function that aggregates the predicted
metrics (e.g., a weighted sum for multi-objective optimization). The
schematic of this integration is illustrated in Figure 1, highlight-
ing the closed-loop interaction between the controller, candidate
architectures, and the SEval-NAS evaluator.

This modular design ensures that SEval-NAS can be seamlessly
incorporated into existing NAS frameworks, such as FreeREA, with-
out requiring significant modifications to the search algorithm. The
flexibility of the prediction layer allows adaptation to varying num-
bers of objectives, enhancing the applicability of SEval-NAS across
diverse hardware and performance constraints.

4 Experiments and Results

We evaluated the effectiveness of SEval-NAS using two NAS bench-
marks: NATSBench [7] and HW-NAS-Bench [15]. Our evaluation fo-
cused on how well our method’s predictions correlated with actual
performance metrics. Additionally, we demonstrate the adaptability
of our approach by applying it to FreeREA. We run our experiments
on a 13th Gen Intel(R) Core(TM) 9-13900K server equipped with
NVIDIA GeForce RTX 4090.

4.1 Model Configuration

The evaluator in SEval-NAS is a transformer encoder whose input
is the neural network’s text representation and outputs the embed-
ding into a regression head for prediction. Specifically, we use the
encoder from the T5 transformer [24]. It consists of stacked layers
containing a self-attention layer and a small feed-forward network,
followed by layered normalization and a residual skip connection.
Dropout is strategically applied to the feed-forward network, the

skip connection, the attention weights, and the stack’s input and
output. We use three different sizes of T5 models :

e T5-small, which uses 8-headed attention, has only 6 layers
each in the encoder and decoder, and has roughly 60 million
parameters.

e T5-base, which uses 12-headed attention, has 12 layers each
in the encoder and decoder, and has nearly 220 million pa-
rameters.

e T5-large, which uses 16-headed attention, has 24 layers each
in the encoder and decoder, and has approximately 770 mil-
lion parameters

The predictor is a single dense layer whose number of output neu-
rons depends on the number of desired objectives.

4.2 Training

The evaluator (T5-small model) is trained to predict performance
metrics on datasets containing NNs and their reported metrics.
Other models (i.e., T5-base and T5-large) are trained and evaluated
via an ablation study (see Appendix A). In NAS, these datasets exist
as NAS benchmarks containing thousands of neural architectures
and metrics such as accuracy, latency, and FLOPS obtained from
training and inferencing those networks. Typically, these bench-
marks exclude memory usage, prompting the need for additional
profiling. To address this, we build a lookup table containing the
peak memory usage using the built-in PyTorch memory profiling
tool 1. This tool measures the peak memory allocated to tensors
during training, providing an accurate assessment of NNs” memory

!torch.cuda.max_memory_allocated

SEval-NAS: A Search-Agnostic Evaluation for Neural Architecture Search

footprint. The profiling is isolated from memory used by exter-
nal factors such as libraries or system variables, ensuring precise
measurement. We train our evaluator on two NAS benchmarks:
NATS-Bench [7] and HW-NAS-Bench [15].

4.3 Experiment 1: Feasibility Testing
(Evaluation on NATS-Bench)

NATS-Bench [7] is a unified benchmark dataset for searching on
both architecture topology and size. It consists of 15,625 different
architectures for the Topology Search Space (TSS) and 32,768 ar-
chitectures for the Size Search Space (SSS) evaluated on CIFAR10,
CIFAR100, and ImageNet16-120.

In the TSS, each architecture corresponds to a different cell rep-
resented as a densely connected directed acyclic graph (DAG) with
four nodes and edges corresponding to operations from a prede-
fined set of 5 operations. For each architecture in the TSS, the
cells are stacked 5 times, with output channels set to 16, 32, and
64 for three stages. The search results in a search space contain-
ing 15,625 possible architectures configured for the image dataset
considered (i.e., CIFAR-10, CIFAR-100 [13], and ImageNet16-120
[6]). The SSS searches for architectures by varying the number of
channels in each layer (convolution, cell, or block). Each architec-
ture consists of a stacked cell, and the number of channels in each
layer is selected from the set {8, 16, 24, 32, 40, 48, 56, 64}, resulting
in 32,768 architectures. For our experiment, we evaluate the TSS
and SSS. In each search space, we separately train the evaluator
on the CIFAR-10, CIFAR-100, and ImageNet16-120 architectures,
configuring our network for both (accuracy, memory) and (accuracy,
latency) bi-objective setups.

cifar10 Memory
= 0.8982

cifar100 Memory ImageNet16-120 Memory
89 =0.9088

Predicted Memory (MB)
Predicted Memory (MB)

. (1]
o

Predicted Memory (MB)
-
-
-

Memory

True Memory (MB) e Memory (MB)

(a) CIFAR-10

cifar10 Latency
=081

(b) CIFAR-100

c'farrlzog ';3%"‘{'“ ImageNet16-120 Latency
- = 07015

(c) ImageNet16-120

Predicted Latency (ms)
Predicted Latency (ms)
Predicted Latency (ms)

" True Latency (ms) " "rte Latency (ms) e Latency (ms)

(d) CIFAR-10 (e) CIFAR-100 (f) ImageNet16-120

Figure 2: Plots of predicted vs true hardware cost of NATS-
Bench TSS architectures (using T5-small) for performance
metrics reported on CIFAR-10, CIFAR-100, and ImageNet16-
120 datasets. The strength of correlation increases as 7 ap-

proaches 1.

The results of the NATS-Bench TSS in Fig. 2 show a strong pos-
itive Kendall 7 correlation between predicted and true values for
hardware costs. Predicted memory usage aligns closely with the
true values across all datasets. Similarly, latency predictions exhibit

SAC’26, March 23-27, 2026, Thessaloniki, Greece

a high correlation for CIFAR-10 and CIFAR-100, while ImageNet16-
120 shows a slightly weaker correlation. This suggests that SEval-
NAS effectively predicts hardware costs in the TSS space due to the
architectural features. The reason why the SEval-NAS effectively
predicts hardware costs in the TSS in Fig. 2 is due to the Auto-
grad Traversal and String Generation block, which significantly
optimizes the neural architecture in topology.

cifar10 Memory cifar100 Memory
T=07721 =076

ImageNet16-120 Memory
=07732

Memory (MB)

Predicted Memory (MB)

Predicted Memory (MB)

Memory

" True Memory (MB) " True Memory (MB) " Tue Memory (MB)

(a) CIFAR-10

cifar10 Latency
=0.7586

(b) CIFAR-100

cifar100 Latency
= 0.7

(€) ImageNet16-120

ImageNet16-120 Latency
T=05739

Predicted Latency (ms)
Predicted Latency (ms)

True Latency (ms) True Latency (ms) *® Tue Laﬂtenc"y <rr§;) ’

(d) CIFAR-10 (e) CIFAR-100 (f) ImageNet16-120
Figure 3: Plots of predicted vs true hardware cost of

(using T5-small) for performance
metrics reported on CIFAR-10, CIFAR-100, and ImageNet16-
120 datasets. The strength of correlation increases as 7 ap-

proaches 1.

For the NATS-Bench SSS results illustrated in Fig. 3, predicted
memory usage again shows a strong positive correlation with the
true values across all datasets. Predicted latency has a similar trend
with a strong correlation in CIFAR-10 and CIFAR-100. However,
latency prediction for the ImageNet16-120 dataset appears less ro-
bust, with noticeable variance. In terms of predicted latency on
SSS across CIFAR-10, CIFAR-100, and ImageNet16-120 in Fig. 2.
From the dataset itself, especially ImageNet16-120 compared to
CIFAR-100 and CIFAR-10, we know ImageNet16-200 emphasizes
low-resolution feature extraction; thus, ImageNet16-120 is reli-
able for memory predictions but unstable for latency prediction.
Whereas CIFAR-100 and CIFAR-10 are designed for fine-grained
classification, which results in good reliability on both memory
predictions and latency memory. Therefore, while SEval-NAS re-
mains reliable for memory predictions, its reliability in predicting
latency is dataset-dependent and influenced by the variability of
the architectures.

In comparison, while positively correlated, accuracy predictions
in Fig. 4 exhibit weaker correlations than those for hardware costs.
This suggests that SEval-NAS struggles to confidently infer accu-
racy from neural architecture representations. Furthermore, there is
no trend linking dataset type to prediction reliability for accuracy,
highlighting that accuracy depends on factors beyond straight-
forward architectural features. Overall, SEval-NAS demonstrates
stronger predictability for hardware metrics than accuracy, primar-
ily because hardware costs are directly tied to architectural char-
acteristics. For example, more convolutional filters in a network

SAC’26, March 23-27, 2026, Thessaloniki, Greece

Kendall T for Accuracy across Bi-Objective Setups Kendall T for Accuracy across Bi-Objective Setups
™ o5 o57 057

Kendall T
Kendall T

oo oo
(accuracy, memory) (accuracy, memory)

(accuracy, latency)
Bi-objective Setup

(accuracy, latency)
Bi-objective Setup

(a) NATS-Bench TSS (b) NATS-Bench SSS
Figure 4: Kendall’s 7 correlation for predicted vs true accu-
racy in NATS-Bench TSS and SSS search spaces. Comparison
includes both (accuracy, latency) and (accuracy, memory) bi-
objectives.

will need more computation than fewer convolutional filters [22].
Meanwhile, this correlation cannot be directly made for accuracy.

We also conducted an experiment (Appendix A) to evaluate three
different encoder/decoder models (T5-small, T5-base, and T5-large)
on NATS-Bench SSS and NATS-Bench TSS. This ablation study
compared how model size affects the correlation between predicted
versus true memory and predicted versus true latency, as measured
by Kendall correlation.

The results from our extra ablation studies (Fig. 6 in Appendix
A.1) showed that T5-small, T5-base, and T5-large perform similarly
on the TSS benchmark. However, we observed that only T5-large
encoders exhibit lower Kendall 7z correlations on the SSS. Addi-
tionally, we found that different encoder sizes (Appendix A.2) do
not significantly impact performance on NATS-Bench TSS for ei-
ther memory or latency correlations (Fig. 7). In contrast, T5-large
demonstrates weaker 7 correlations for both memory and latency
predictions on NATS-Bench SSS, as shown in Fig. 8.

4.4 Experiment 2: Predicting Hardware Cost
(Evaluation on HW-NAS-Bench)

Although we observe a strong positive latency correlation in the
NATS-Bench search spaces, the latency of a NN largely depends
on the hardware environment. To investigate how well SEval-NAS
would theoretically predict latency across various hardware devices,
we evaluate its performance on HW-NAS-Bench.
HW-NAS-Bench [15] was designed for hardware-aware NAS.
It includes two NAS search space designs: NAS-Bench-201’s cell-
based search space and FBNet’s search space. The dataset provides
the hardware cost of the NNs from both search spaces on commer-
cial devices, including Edge GPU, Edge TPU, ASIC Eyeriss, FPGA,
Pixel 3, and Raspberry Pi 4. FBNet search space [30] builds a layer-
wise search space with a fixed macro-architecture and varying
middle layers that can be searched. The architectures in this search
space have regular structures that include nine cell candidates and
22 positions, yielding 9% ~ 10?! different architectures. Due to the
excessively large size of the search space, we do not use it in our
experiment. NAS-Bench-201 search space [8] is the original search
space of the TSS architectures in NATS-Bench. It contains the same
15,625 architectures with results reported for CIFAR-10, CIFAR-100,
and ImageNet16-120 and their hardware costs on each of the six

Atah Nuh Mih, Jianzhou Wang, Truong Thanh Hung Nguyen, and Hung Cao

devices. We evaluate SEval-NAS on the HW-NAS-Bench’s NAS-
Bench-201 subspace for values reported on the CIFAR-10 dataset.
The evaluator is trained to predict only latency, testing the perfor-
mance of SEval-NAS on a single objective metric.

TS-small Latency in Edge GPU T5-small Latency in Edge TPU TS-small Latency in ASIC Eyeriss
= 0,843 = 0.6047 T 09558

True Latency (ms)

(c) ASIC Eyeriss

Ts-small Latency in Raspberry Pi 4
= 08659

(b) Edge TPU

Ts-small Latency in Pixel 3
= 08656

True Latency (ms)

(a) Edge GPU

T5-small Latency in FPGA
T=0.9857

atency (ms)
(ms)

L
s

“True Latency (ms)

(f) Raspberry Pi 4

True Latency (ms)

(d) FPGA (e) Pixel 3
Figure 5: Plots of predicted vs true latency for NAS-Bench-
201 architectures with T5-small encoder for 6 edge devices
reported in the HW-NAS-Bench benchmark. The strength of
correlation increases as 7 approaches 1.

Results in Fig. 5 show a strong positive Kendall 7 correlation
for most edge devices, with values ranging from 0.6047 to 0.9742,
demonstrating SEval-NAS’s ability to predict latency across six
different edge devices. The Edge TPU’s latency predictions stand
out as an outlier, showing a weaker correlation (r = 0.6047). This
is attributed to negative latency values reported in the HW-NAS-
Bench dataset, which likely affected the model’s ability to predict
latency in this case. Despite this, other devices, such as the Edge
GPU (r = 0.8676), Eyeriss (r = 0.9558), FPGA (r = 0.9742), Pixel
3 (r = 0.8599), and Raspi4 (r = 0.8659), exhibit strong correla-
tions, indicating consistent and reliable performance across diverse
hardware configurations.

Both experiments show that training the evaluator for bi-objectives
in NATS-Bench and a single objective in HW-NAS-Bench consis-
tently yielded positive Kendall 7 correlation values. This demon-
strates the effectiveness of SEval-NAS in adapting to different num-
bers of evaluation objectives, further solidifying its strength as a
predictive method for latency across edge devices.

We also conduct the additional experiments (in Appendix A.3)
to run three different encoder/decoder models: T5-small (Fig. 5),
T5-base (Fig. 9), and T5-large (Fig. 10) on HW-NAS-Bench as an
ablation study of comparison of model size on the predicted latency
vs true latency.

We observe that different encoder/decoder models do not have
great impact (less than 0.02 latency correlation difference) except
that T5-base in Edge GPU (0.8804) and T5-large in Edge GPU
(0.8852) have stronger latency correlation than T5-small in Edge
GPU(0.8434) since T5-small’s operators are smaller, which results in
GPU kernel launching overhead accounting for a higher proportion
of the total latency. Moreover, T5-large and T5-base have longer
latency, the relative impact of noise is smaller, which leads to a
higher latency correlation.

SEval-NAS: A Search-Agnostic Evaluation for Neural Architecture Search

Table 1: Test accuracy and time for various NAS algorithms
for NATS-Bench.

CIFAR 10 CIFAR 100 ImageNet16-120

Algorithm Accuracy Time (s) | Accuracy Time (s) | Accuracy Time (s)
NASWOT (1000) 93.10 £ 0.31 248 | 69.10 £ 1.61 248 | 45.08 £ 1.55 248
TENAS 93.90 £ 0.47 1558 | 71.24 £ 0.56 1558 | 42.38 + 0.46 1558
NASI 93.55 £ 0.10 120 | 71.20 +0.14 120 | 44.84 +1.41 120
GA-NINASWOT 93.70 £ 0.63 206 | 71.57 £ 1.37 206 | 45.18 £ 2.05 206
EPE-NAS 91.31 £ 1.69 104 | 69.58 +0.83 104 | 41.84 +2.06 104
FreeREA 94.36 £ 0.00 45 | 73.51+0.05 45 | 46.34 +0.00 45

Ir FreeREA + Latency | 94.36 + 0.00 77 | 73.51+0.00 82 | 46.34 +0.00 81 :

1| FreeREA + Memory | 84.21 + 14.91 34 | 49.67 + 11.35 37 | 19.66 +7.19 38

4.5 Experiment 3: Ease of Integration (Evaluator
in a NAS)

The contrast in correlation values observed between accuracy (low
and moderate correlation) and hardware costs (strong correlation)
highlights the evaluator’s strength as a hardware cost predictor.
This strength can be effectively leveraged to enhance NAS ap-
proaches that traditionally optimize accuracy as a single objective
by incorporating hardware constraints into their search strategies.
To demonstrate this applicability, we integrate SEval-NAS into
FreeREA [2] to search in the NATS-Bench search space and define
hardware constraints for the search. FreeREA uses evolutionary
search to find candidate architectures and evaluates the candidate
architecture using a training-free metric to estimate the accuracy
performance.

FreeREA algorithm on NATS-Bench TSS is constrained by FLOPS
and #Params. Since FLOPS is a poor proxy for hardware costs [15,
29], we replace it with two alternative constraints: 1) latency and 2)
memory usage, each tested separately. For each metric, the mean
value reported in the benchmark is set as the threshold for ranking
candidate architectures. For example, these cases use the mean
latency (45.96 seconds) and memory usage (166.67 MB) from the
NATS-Bench CIFAR-10 dataset as thresholds. The resulting perfor-
mance is compared against FreeREA and other training-free NAS
algorithms reported in [2], with findings summarized in Table 1.

Latency-constrained search identified an average of approxi-
mately 230 architectures satisfying the threshold, achieving final
average accuracies consistent with those reported in the original
FreeREA study. In contrast, the memory-constrained search discov-
ered fewer architectures (on average, fewer than 10) that met the
threshold, indicating a bias in the search algorithm against low-
memory architectures. This smaller pool of candidates led to higher
variability in test accuracies due to the diverse performance of low-
memory architectures. Importantly, while the latency-constrained
search doubled FreeREA’s search time, this overhead from evaluator
inference remained negligible compared to other NAS algorithms.
Conversely, the memory-constrained search required less time due
to the limited number of viable candidate architectures.

These results highlight the flexibility of SEval-NAS for hardware
cost evaluation while making minimal changes to the algorithm.
By integrating additional constraints (e.g., latency and memory
thresholds), the NAS algorithm can be tailored to select candidate
architectures suitable for target hardware devices. For instance,

SAC’26, March 23-27, 2026, Thessaloniki, Greece

deploying SEval-NAS on an edge device with memory constraints
matching the device’s operating range would yield architectures
suitable for deployment. This study establishes the feasibility of in-
corporating SEval-NAS into NAS pipelines, with the specific objec-
tive of demonstrating integration viability rather than algorithmic
optimization. The investigation of threshold parameter effects on
search dynamics represents a natural extension of this foundational
work and constitutes a promising direction for future research.

5 Conclusion and Future Work

NAS discovers novel architectures without expert knowledge, but
suffers from extensive evaluation times when training or deploy-
ing architectures. We proposed SEval-NAS, which converts neural
architectures to string representations via autograd graph traver-
sal, then maps embeddings to predicted performance metrics. We
evaluated SEval-NAS using two NAS benchmarks: NATS-Bench
and HW-NATS-Bench, focusing on accuracy, latency, and memory.
Our experimental results demonstrated that latency and memory
predictions correlate best, indicating SEval-NAS’s strength as a
hardware cost predictor. However, its accuracy predictions showed
moderate correlation, reflecting limitations in its ability to evaluate
accuracy effectively. Our ablation studies on different sizes of en-
coder/decoder models on NATS-Bench and HW-NATS-Bench found
that the larger the encoder, the lower the Kendall 7 correlations
on the NATS-Bench SSS. In terms of Hardware testing on HW-
NATS-Bench, the experiment indicates a larger encoder/decoder
model, stronger latency correlation in Edge GPU due to kernel
operator, and longer latency. To test the adaptability of SEval-NAS,
we incorporated it into FreeREA [2], adding latency and memory
constraints to the search. The results showed that SEval-NAS had
a low impact on search time and facilitated adding new evaluation
criteria for selecting candidate architectures with minimal changes
to the algorithm. These findings also showed that SEval-NAS can
complement training-free NAS focused on predicting accuracy, pro-
viding a comprehensive evaluation of candidate architectures for
diverse performance metrics.

Our experiments relied on hardware metrics reported in the re-
spective NAS benchmarks, which may not accurately reflect the ac-
tual values if run on the devices. This shortcoming can be addressed
by designing an on-device NAS with a lightweight SEval-NAS to
evaluate candidate architectures. This enhancement and exploring
additional thresholds in FreeREA are left as a direction for future
work.

Acknowledgement

This work has been supported by NSERC Discovery Grant No
RGPIN 2025-00129.

References

[1] Bowen Baker et al. 2018. Accelerating neural architecture search using perfor-
mance prediction. In International Conference on Learning Representations.

[2] Niccoi O Cavagnero et al. 2023. Freerea: training-free evolution-based architec-
ture search. In IEEE/CVF Winter Conference on Applications of Computer Vision
(WACV), 1493-1502.

[3] Angelica Chen et al. 2023. Evoprompting: language models for code-level
neural architecture search. Advances in Neural Information Processing Systems,
36, (Dec. 2023).

SAC’26, March 23-27, 2026, Thessaloniki, Greece

(4]

(5]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
(18]

[19]

[20]
[21]

[22]

[23]
[24]
[25]
[26]
[27]
[28]

[29]

[31]

[32]

Wuyang Chen et al. 2021. Neural architecture search on imagenet in four
gpu hours: a theoretically inspired perspective. In International Conference on
Learning Representations.

Krishna Teja Chitty-Venkata et al. 2023. Neural architecture search benchmarks:
insights and survey. IEEE Access, 11, 25217-25236.

Patryk Chrabaszcz et al. 2017. A downsampled variant of imagenet as an
alternative to the cifar datasets. (2017). arXiv: 1707.08819 [cs.CV].

Xuanyi Dong et al. 2022. Nats-bench: benchmarking nas algorithms for archi-
tecture topology and size. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44, (July 2022), 3634-3646, 7, (July 2022).

Xuanyi Dong and Yi Yang. 2020. Nas-bench-201: extending the scope of re-
producible neural architecture search. In International Conference on Learning
Representations.

Yanjie Gao et al. 2020. Estimating gpu memory consumption of deep learning
models. ESEC/FSE 2020 - Proceedings of the 28th ACM Joint Meeting European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, 20, (Nov. 2020), 1342-1352. IsBN: 9781450370431. doi:10.1145/3368
089.3417050.

Mohamed Imed Eddine Ghebriout et al. 2024. Harmonic-nas: hardware-aware
multimodal neural architecture search on resource-constrained devices. In
Asian Conference on Machine Learning. PMLR, 374-389.

Amir Gholami et al. 2018. Squeezenext: hardware-aware neural network design.
In Proceedings of the IEEE conference on computer vision and pattern recognition
workshops, 1638-1647.

Minghao Guo et al. 2019. Irlas: inverse reinforcement learning for architecture
search. In Proceedings of the IEEE conference on computer vision and pattern
recognition.

Alex Krizhevsky and Geoffrey Hinton. 2009. Learning multiple layers of features
from tiny images.

Achintya Kundu et al. 2023. Transfer-once-for-all: ai model optimization for
edge. IEEE International Conference on Edge Computing and Communications
(EDGE). 1sBN: 9798350304831. doi:10.1109/EDGE60047.2023.00017.

Chaojian Li et al. 2021. Hw-nas-bench:hardware-aware neural architecture
search benchmark. ICLR 2021 - 9th International Conference on Learning Repre-
sentations, (Mar. 2021).

Yuke Li et al. 2023. Pareto optimization of cnn models via hardware-aware neu-
ral architecture search for drainage crossing classification on resource-limited
devices. Proceedings of the SC "23 Workshops of The International Conference
on High Performance Computing, Network, Storage, and Analysis, (Nov. 2023),
1767-1775. 1SBN: 9798400707858. d0i:10.1145/3624062.3624258.

Chenxi Liu et al. 2018. Progressive neural architecture search. In European
Conference on Computer Vision (ECCV).

Rengian Luo et al. 2021. Neural architecture optimization. In Neural Information
Processing Systems. https://github.com/renqianluo/NAO..

Xiangzhong Luo et al. 2020. Edgenas: discovering efficient neural architectures
for edge systems. Proceedings - IEEE International Conference on Computer
Design: VLSI in Computers and Processors, 2020-October, (Oct. 2020), 288-295.
Bo Lyu et al. 2022. Resource-constrained neural architecture search on edge
devices. IEEE Transactions on Network Science and Engineering, 9, 1.

Joe Mellor et al. 2021. Neural architecture search without training. In Interna-
tional conference on machine learning. PMLR, 7588-7598.

Atah Nuh Mih et al. 2024. Achieving Pareto Optimality using Efficient Pa-
rameter Reduction for DNNs in Resource-Constrained Edge Environment.
Proceedings of the Canadian Conference on Artificial Intelligence, (May 2024).
https://caiac.pubpub.org/pub/2gh9r4xc.

Hieu Pham et al. 2018. Efficient neural architecture search via parameters
sharing. In International conference on machine learning. PMLR.

Colin Raffel et al. 2020. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of machine learning research, 21, 140, 1-67.
Esteban Real et al. 2019. Regularized evolution for image classifier architecture
search. Proceedings of the AAAI Conference on Artificial Intelligence.
Pengzhen Ren et al. 2021. A comprehensive survey of neural architecture
search: challenges and solutions. ACM Computing Surveys (CSUR), 54, 4, 1-34.
Blake Richey et al. 2024. Multi-reward optimization using genetic algorithms
for edge ai. In Real-Time Image Processing and Deep Learning 2024. SPIE.
Matteo Risso et al. 2022. Lightweight neural architecture search for temporal
convolutional networks at the edge. doi:10.1109/TC.2022.3177955.

Nilotpal Sinha et al. 2024. Hardware aware evolutionary neural architecture
search using representation similarity metric. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision (WACV), 2628-2637.
Bichen Wu et al. 2019. Fbnet: hardware-aware efficient convnet design via
differentiable neural architecture search. In IEEE/CVF conference on computer
vision and pattern recognition.

Lingxi Xie and Alan Yuille. 2017. Genetic cnn. In International Conference on
Computer Vision. IEEE.

Li Lyna Zhang et al. 2021. Towards accurate latency prediction of deep-learning
model inference on diverse edge devices. In International Conference on Mobile
Systems, Applications, and Services. ACM.

Atah Nuh Mih, Jianzhou Wang, Truong Thanh Hung Nguyen, and Hung Cao

[33] Yusen Zhang et al. 2024. Oncenas: discovering efficient on-device inference
neural networks for edge devices. Information Sciences.

[34] Barret Zoph et al. 2018. Learning transferable architectures for scalable image
recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, 8697-8710.

[35] Barret Zoph and Quoc Le. 2017. Neural architecture search with reinforcement
learning. In International Conference on Learning Representations.

A Appendix

A.1 Ablation Study 1: Evaluation among
different T5 encoders across Bi-Objective
Setups)

5 TS5 Kendall s Correlation for Accuracy across Bi-Objective Setups 5 555 Kendall s Correlation for Accuracy across Bi-Objectve Setups

Kendall Tau
Kendall Tau

(accuracy, stency) faccursy, atency)

8i.objective Setup Bi.objective Setup

(a) NATS-Bench TSS (b) NATS-Bench SSS

Figure 6: Kendall’s 7 correlation for predicted vs true accu-
racy among encoders of T5-small, T5-base, and T5-large on
NATS-Bench TSS and NATS-Bench SSS (accuracy, latency)
and (accuracy, memory) bi-objectives.

A.2 Ablation Study 2: Feasibility Testing
(Evaluation on NATS-Bench) on Different
Encoders

ImageNet16-120 Memory ImageNet16-120 Memory ImageNet16-120 Memory
T=0.9088 T=0.9237 T =0.9250

& B o &
Ee s H -’ 2 .
> 2 »* 2o ot 2 w0 o
I 2! E. o? 5. .
Q =« [} = P} = ¢ .
£ i Be B g
5} g g ')
D Ewl 1" Sl 0 Sl o
E a . a U a .
True Memory (MB) True Memory (MB) " True Memory (MB)
(a) T5-small (b) T5-base (c) T5-large
ImageNet16-120 Latency ImageNet16-120 Latency ImageNet16-120 Latency
T=0.7015 - T=0.7017 T=0.6953
3 3 Gz
Ea £z £,
> 200 > >
> gns § 1 5;5
= I g 8"
c 3 EM s
o i Ze o
- S) S
® 2. g g,
— 50 75 100 125 150 175 200 225 250 so 78 50 50 75 160 15 10 s 200 25 B0

True Latency (ms) True Latency (ms) True Latency (ms)

(d) T5-small (e) T5-base (f) T5-large

Figure 7: Plots of predicted vs true hardware cost of NATS-
Bench TSS architectures for performance metrics reported on
T5-small, T5-base, and T5-large. The strength of correlation

increases as 7 approaches 1.

https://arxiv.org/abs/1707.08819
https://doi.org/10.1145/3368089.3417050
https://doi.org/10.1145/3368089.3417050
https://doi.org/10.1109/EDGE60047.2023.00017
https://doi.org/10.1145/3624062.3624258
https://github.com/renqianluo/NAO.
https://doi.org/10.1109/TC.2022.3177955

SEval-NAS: A Search-Agnostic Evaluation for Neural Architecture Search

ImageNet16-120 Memory ImageNet16-120 Memory
T=0.7677 T=06918

ImageNet16-120 Memory
=077

D w0 a -

g 2w |
> 2 T [
= g = 2 L _4
o 2 2w B

i . B & -
£ g -

B B
S I i - F

EEIEE To w0 B0
True Memory (MB) True Memory (MB) True Memory (MB)

(a) T5-small

ImageNet16-120 Latency
T=05739

(b) T5-base

ImageNet16-120 Latency
T=0.5798

(c) T5-large

ImageNet16-120 Latency
7 =0.5308

Predicted Latency (ms)
Predicted Latency (ms)

N DO T S I N] B m_@m @ % m ®
True Latency (ms) True Latency (ms) True Latency (ms)

(d) T5-small (e) T5-base (f) T5-large

Figure 8: Plots of predicted vs true hardware cost of NATS-
Bench SSS architectures for performance metrics reported on
T5-small, T5-base, and T5-large. The strength of correlation

increases as 7 approaches 1.

A.3 Ablation Study 3: Predicting Hardware Cost
(Evaluation on HW-NAS-Bench) on
Different Encoders

T5-base Latency in Edge GPU T5-base Latency in Edge TPU T5-base Latency in ASIC Eyeriss
T 0.8804 7= 08166 T2 09563

Predicted Latency ms)
Predicted Latency (ms)

Tue Latency (ms) True Latency (ms) True Latency (ms)

(a) Edge GPU

T5-base Latency in FPGA
T = 08857

(b) Edge TPU

T5-base Latency in Pixel 3
T2 05856

(c) ASIC Eyeriss

TS-base Latency in Raspberry P 4
= 0,866

Predicted Latency (ms)
RN

Predicted Latency ms)

5 L] @ % ®

True Latency (ms) True Latency (ms)

(e) Pixel 3

True Latency ms)

(d) FPGA (f) Raspberry Pi 4
Figure 9: Plots of predicted vs true latency for NAS-Bench-
201 architectures with T5-base encoder for 6 edge devices
reported in the HW-NAS-Bench benchmark. The strength of
correlation increases as 7 approaches 1.

SAC’26, March 23-27, 2026, Thessaloniki, Greece

T5-large Latency in Edge GPU Ts-large Latency in Edge TPU ‘To-large Latency in ASIC Eyeriss
708852 T= 06255 TZ0as6a

H

True Latency (ms)

(c) ASIC Eyeriss

TS-large Latency in Raspberry Pi 4
T=08712

True Latency ms)

(b) Edge TPU

“TS-large Latency in Pixel 3
T2 08380

True Latency (ms)

(a) Edge GPU

T5-large Latency in FPGA
T <09847

Predicted Latency ms)

Predicted Latency ms)

ERENCIE]
True Latency (ms)

(f) Raspberry Pi 4

True Latency ms)

(e) Pixel 3

True Latency (ms)

(d) FPGA

Figure 10: Plots of predicted vs true latency for NAS-Bench-
201 architectures with T5-large encoder for 6 edge devices
reported in the HW-NAS-Bench benchmark. The strength of
correlation increases as 7 approaches 1.

	Abstract
	1 Introduction
	2 Literature Review
	2.1 Training-Free NAS
	2.2 Hardware-Aware NAS
	2.3 NAS as a String Search Problem

	3 Methodology
	3.1 Net-to-String Conversion
	3.2 Evaluator
	3.3 Integration into NAS Pipeline

	4 Experiments and Results
	4.1 Model Configuration
	4.2 Training
	4.3 Experiment 1: Feasibility Testing (Evaluation on NATS-Bench)
	4.4 Experiment 2: Predicting Hardware Cost (Evaluation on HW-NAS-Bench)
	4.5 Experiment 3: Ease of Integration (Evaluator in a NAS)

	5 Conclusion and Future Work
	A Appendix
	A.1 Ablation Study 1: Evaluation among different T5 encoders across Bi-Objective Setups)
	A.2 Ablation Study 2: Feasibility Testing (Evaluation on NATS-Bench) on Different Encoders
	A.3 Ablation Study 3: Predicting Hardware Cost (Evaluation on HW-NAS-Bench) on Different Encoders

