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I. INTRODUCTION 

Mobility analytics using data generated from the Internet of 

Mobile Things (IoMT) is facing many challenges which range from 

the ingestion of data streams coming from a vast number of fog 

nodes and IoMT devices to avoiding overflowing the cloud with 

useless massive data streams that can trigger bottlenecks [1]. 

Managing data flow is becoming an important part of the IoMT 

because it will dictate in which platform analytical tasks should run 

in the future. Data flows are usually a sequence of out-of-order 

tuples with a high data input rate, and mobility analytics requires a 

real-time flow of data in both directions, from the edge to the cloud, 

and vice-versa. Before pulling the data streams to the cloud, edge 

data stream processing is needed for detecting missing, broken, and 

duplicated tuples in addition to recognize tuples whose arrival time 

is out of order. Analytical tasks such as data filtering, data cleaning 

and low-level data contextualization can be executed at the edge of 

a network. In contrast, more complex analytical tasks such as graph 

processing can be deployed in the cloud, and the results of ad-hoc 

queries and streaming graph analytics can be pushed to the edge as 

needed by a user application. Graphs are efficient representations 

used in mobility analytics because they unify knowledge about 

connectivity, proximity and interaction among moving things. 

This poster describes the preliminary results from our 

experimental prototype developed for supporting transit systems, 

in which edge and cloud computing are combined to process transit 

data streams forwarded from fog nodes into a cloud. The 

motivation of this research is to understand how to perform 

meaningfulness mobility analytics on transit feeds by combining 

cloud and fog computing architectures in order to improve fleet 

management, mass transit and remote asset monitoring [2]. 

II. SYSTEM ARCHITECTURE 

Our prototype system architecture is shown in Fig. 1 and 

consists of three-layers named as Fog Node Cluster (sensing layer), 

Aggregated Fog Node (access layer) and Cloud (core layer). The 

fog node cluster is a group of mobile fog nodes that pull data from 

sensors deployed in a transit vehicle. Each mobile fog node is 

designed to be installed inside a transit vehicle belonging to a 

transit fleet. The Cisco 829 GW-LTE-NA-AK9 was selected for the 

experiment because is designed for harsh environments including 

shock, humidity, and wide temperature range. The transit data 

streams contain information including bus route identifier, bus 

route number, vehicle identifier, GPS coordinates and timestamp 

that are generated at different time granularities, including every 

5s, every 30min, or every day (Fig 2.) 

We selected an aggregated fog node for running the Edge Fog 

Fabric (EFF) platform in order to pass the data streams from the 

mobile fog node cluster to the cloud, and vice-versa [3]. The EFF 

manages and ensures that there is an appropriate flow of unbounded 

tuples in both directions, and perform analytical tasks such as 

filtering, cleaning and contextualization. The EFF is basically 

composed by a system administrator, dataflow editor and engine, 

system monitor, message broker, links, and IoT database (i.e. 

ParStream) [4]. 

 

Figure 1. Overall prototype architecture. 

The cloud is the core layer where the Neo4j database is situated. 

It is the place where mobility analytics is conducted based on the 

compressed and post-processed data coming from the EFF. The 

mobility analytics is carried out using an integrated Apache Spark 

GraphX engine and Neo4J. 

Fig. 2 illustrates the life cycle that takes place every time the 

tuples flow through the system, from the mobile fog nodes to the 

cloud. It consists of six steps: the data transportation, the data 

processing, the data leverage, the data control, the data acquisition, 

and the data storage. Every tuple is sent (data transportation) and 

received by the destination mobile fog nodes (data acquisition). 

After that, in order to process the tuple (data processing) and 

perform mobility analytics, the EFF controls the sets of tuples (data 

control)  by retaining (data storage) and retrieving (data leverage) 

them continuously. All the steps related in this life cycle of our 

prototype are operated through the ParStream [3]. 

 

Figure 2. Life cycle for IoMT of the experimental system. 

III. MOBILITY ANALYTICS 

The mobility analytical workflow consists of: (1) data cleaning 

tasks deployed at the mobile fog nodes (sensing layer); (2) data 
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contextualization tasks performed at the aggregated fog node 

(access layer), and (3) graph query running in the cloud (core layer). 

Data cleaning is always necessary in order to remove errors and 

inconsistencies from the tuples. The data cleaning task is 

implemented using a Python script algorithm for processing five 

automated steps to handle (1) missing tuples, (2) duplicated tuples, 

(3) missing attribute values, (4) redundant attributes, and (5) 

wrong attribute values [5].  

The data contextualization task enriches the tuples from the 

previous data cleaning task using higher level concepts accordingly 

to a particular mobility context. In the current prototype, the 

geographical coordinates (x, y) and the timestamp t of each tuple 

are used for this contextualization. First, an empirical distance 

value of 15m is designated to compute stops and moves. Second, 

the Euclidean distance between two consecutive points (i.e. tuples) 

is computed. If the distance between them is smaller than 15m, a 

new attribute containing the value “stop” is added to the second 

tuple. In contrast, if the distance is higher than 15m, the “move” 

attribute value is added to the second tuple.  

Finally, time-varying graph queries using graph metrics such as 

shortest path, degree and page rank centrality are run in a Neo4j 

database in the cloud, which includes a master node and slave nodes 

that were deployed using the Compute Canada West Cloud [6]. The 

query outputs are essentially a time-series of static graph snapshots 

based on a time tree, which is effective for online mobility analytics 

of large temporal graphs where handling speed and complexity is 

at the most importance. 

IV. PRELIMINARY RESULTS 

The transit feeds generated by CODIAC transit network for the 

Greater Moncton area was used for the implementation of our 

prototype system. The transit fleet consists of 642 bus stations 

belonging to 30 bus routes operating from Monday to Saturday, 

some of which also providing evening and Sunday services.  

Fig. 3 shows the results after running a shortest-path query and 

retrieving the shortest bus trips at different peak hours on June 8th 

2016. In this figure, red nodes represent stops which might occur 

because of a traffic jam, accident, collecting passengers at a bus 

station, or a traffic light at one street intersection. Green nodes 

represent moves that occur because a bus is moving on a street or 

passing by a bus station because there are no passengers to drop off 

or get on.  

 

Figure 3. The trip dynamics of the same bus route over time. 

Fig. 4 shows the degree and Page Rank query results for 

retrieving information about the dynamics of the bus stations of a 

bus route. The largest number of stops (red nodes) clustered around 

a bus station (grey nodes) indicates where stopovers have occurred 

for collecting and dropping passengers. The page rank score results 

show the busiest stations as being the ones located at the Plaza, 

Champlain Street and Main Street. The moves (green nodes) shows 

the bus stations where buses passed by a bus station because there 

were no passengers to drop off or get on. 

 

Figure 4. The trip dynamics of bus stations. 

V. FUTURE RESEARCHWORK 

This paper describes the potential of mobility analytics to be 

performed over data streams based on the concept of light-weight 

data processing at the edge, and heavy graph processing in the 

cloud. The preliminary results are positive in paving the way for 

developing edge-cloud system architectures that can support data 

flows for specific purposes, e.g. a dataflow for processing, a 

dataflow for data storage, and a dataflow for data ingestion. Each 

dataflow must be designed taking into account a mobility analytics 

task. We have implemented only one single dataflow (i.e. from 

mobile fog nodes to the cloud), therefore future research work will 

be focused on both directions. We have also implemented the EFF 

platform at the access layer, but we expect to deploy it at the other 

layers as well. The research challenge will be to design a coherent 

mobility analytical workflow which can handle the scalability, 

speed and complexity issues of data streams. 
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