
Extended Online Appendix: Summary of Literature

 Summary of literature included in systematic review.

Author Task Method Findings
Shneiderman
(1976)

Study, hand-
execution

Participants of varying levels of expertise
(non-programmers to expert programmers)
were given two programs to memorize: a
correctly written executable program, and a
program with the lines of code randomly re-
ordered. Participants were asked to rewrite
the programs verbatim. Novice and experi-
enced programmers were given programs to
study and were then asked comprehension
questions and to determine the output pro-
duced by the program.

Experienced programmers form chunks con-
sisting of multiple statements and treat com-
plex control structures as single units when
encoding programs. The results of the study
also indicate that experienced programmers
recode the syntactic notation of the code to
a high-level semantic representation.

Adelson (1981) Study Expert and novice programmers were shown
one line of code at a time in a random or-
der and were then asked to recall the lines of
code.

Novices organize code using syntax whereas
experts use an abstract hierarchical organiza-
tion that is semantically based according to
program function.

Continuation of Table
Author Task Method Findings
McKeithen, Reit-
man, Rueter, &
Hirtle (1981)

Study Beginner, intermediate, and expert program-
mers were shown a program with the lines
of code in either normal or scrambled order
and were asked to recall the program. Partic-
ipants were then given a stack of cards with
the programming language’s reserved words
which they studied and were encouraged to
sort in an order that would be easy to recall.
Participants were asked to recall the words
for non-cued trials (recall in any order) and
cued trials (asked to start with a word, con-
tinue with the words that went with it, and
recall the remainder).

Experts use functional organization when
chunking and their chunks are formed based
on programming knowledge. Beginners’ asso-
ciations of common language to programming
concepts varied greatly, intermediates show
mixtures of programming concepts and com-
mon language associations, and experts form
associations based on programming knowl-
edge.

Weiser (1981) Debugging Experienced programmers were given pro-
grams to debug. After finding the bugs par-
ticipants were shown fragments of algorithms
and were asked if they had been used in the
programs they had debugged.

Results indicate that programmers mentally
construct and use program slices when de-
bugging.

Weiser (1982) Debugging Experienced participants’ ratings of how typ-
ical the bug was, and their debugging time
were recorded. Participants were tested on
their recognition of program slices relevant
to the bugs.

Proposes program slices as an abstract rep-
resentation of a program that can be formed
using information distributed throughout the
program.

Continuation of Table
Author Task Method Findings
Adelson (1984) Study, debugging Expert and novice participants were given ei-

ther code, concrete flow chart of the code, or
abstract flow chart of the code to study fol-
lowed by comprehension questions. Partici-
pants were given either an abstract or con-
crete task (debugging) followed by compre-
hension questions.

Experts form abstract representation and
novices form concrete representations during
program comprehension.

Mynatt (1984) Study, hand-
execution

Participants were given programs that per-
formed the same function but varied in se-
mantic complexity to memorize. Participants
were then asked to immediately recall the
program and perform hand-execution, they
were later asked for delayed recall.

Results indicate that semantically complex
programs are harder for programmers to en-
code and chunk.

Soloway & Ehrlich
(1984)

Study Novice, intermediate, and advanced pro-
grammers were given code with critical lines
left blank and were asked to fill in the blanks
with code to complete the program.

Experts programmers use plans which are
higher-level structures that allow them to
chunk related lines of code. Experts’ plan
knowledge is more advanced than novices’ as
a collection of plans is developed with expe-
rience.

Continuation of Table
Author Task Method Findings
Soloway & Ehrlich
(1984)

Study Participants were given two types of pro-
grams: plan-like and unplan-like. Plan-like
programs were created using a set of pro-
gramming rules of discourse. Participants
were given unfamiliar programs and asked to
fill in the missing line of code. Participants
were then asked to study a program and re-
call the code verbatim. Results of novices
and experts were compared.

Knowledge of programming plans and pro-
gramming rules of discourse has a significant
effect on program comprehension.

Barfield (1986) Study Non-programmers, novice, intermediate, and
expert programmers were asked to memo-
rize code presented in either executable or-
der, random lines, or random chunks. Par-
ticipants recalled the program verbatim and
were scored on the number of lines and
chunks they recalled.

Experts use chunking when understanding
code.

Continuation of Table
Author Task Method Findings
Schmidt (1986) Study Participants studied a meaningful program

one line at a time and then attempted to
recall the program verbatim. The time to
read each line was recorded. Participants
were given a distractor task followed by a
recognition test. Participants then studied
a program of random statements presented
one line at a time at a predetermined rate
and were asked to recall the program verba-
tim. Lastly, they answered comprehension
questions on the meaningful program. Ex-
perience was measured based on number of
computer science courses.

Experienced programmers are able to make
connections between related statements of
meaningful programs more quickly than
novices through their ability to recognize al-
gorithms. Supports the knowledge compila-
tion theory and the use of recall as a measure
of program comprehension.

Bateson, Alexan-
der, & Murphy
(1987)

Study, writing al-
gorithm and code

Expert and novice participants completed
four tests designed to measure: syntac-
tic memory (verbatim recall), strategic skill
(writing algorithms), tactical skill (writing
programs), and semantic memory (general
programming knowledge).

Introduces a cognitive processing model that
illustrates the relationship between seman-
tic and syntactic memory, and programmer
skill/expertise. Semantic memory is the prin-
cipal factor in determining programmer ex-
pertise.

Continuation of Table
Author Task Method Findings
Boehm-Davis,
Holt, & Schultz
(1987)

Modification Expert and novice programmers were tasked
with performing either a complex or simple
modification to programs written in the same
programming language, but using three types
of problems, and with three different struc-
tures: functional, object oriented, and in-line
code. After each modification, participants
were asked to recall segments of the code and
any relationships between the segments. Us-
ing the recalled segments and relationships
written on cards, participants were asked to
create a structure using the cards. The num-
ber of segments and relationships recalled,
and the depth and width of the structure
were analyzed.

Mental representations of experts are not af-
fected by the surface structure of the code
and the content of the program, whereas
novices are affected by these aspects of the
code. Experts’ mental representations are
affected by the difficulty of the task: more
difficult tasks result in more complex rep-
resentations. The complexity of the mental
representations developed by novices are not
affected by the difficulty of the task.

Continuation of Table
Author Task Method Findings
Letovsky (1987) Modification Verbal protocol analysis was performed on

professional programmers who were asked
to perform a maintenance task on an exist-
ing program. The expertise of programmers
ranged from expert level to junior level.

Presents a knowledge-based understanding
model. Programmers use their knowledge
base to form mental models that evolve
during the comprehension process as pro-
grammers assimilate the program (code and
documentation) and their knowledge base.
Programmers use an opportunistic approach
(switch between top-down and bottom-up
strategies) to form mental representations
that include: specification (goals), implemen-
tations (actions), and annotations (how goals
are accomplished).

Continuation of Table
Author Task Method Findings
Littman, Pinto,
Letovsky, &
Soloway (1987)

Maintenance Verbal protocol analysis was performed on
experienced programmers who were asked to
perform a maintenance task on an existing
program. The study also recorded if each
participant was successful or unsuccessful at
completing the task.

Finding suggest that two strategies are
used for program understanding: systematic
(symbolic execution used to trace data flow)
and as-needed (focus on local components re-
quired for task). Two types of knowledge re-
sult from the use of these strategies: static
(knowledge of objects, actions, and func-
tional components), and casual (knowledge of
interactions between functional components).
Programmers that use a systematic strategy
develop strong mental models consisting of
both static and casual knowledge. Program-
mers that use an as-needed strategy develop
weak mental models consisting only of static
knowledge.

Pennington
(1987b)

Study, modifica-
tion

Expert participants answered comprehension
questions and completed a recognition test
after the study for understanding task. Par-
ticipants also wrote a summary and answered
comprehension questions after studying to
prepare for a modification task, and after per-
forming a modification task. Comprehension
questions were related to control flow, data
flow, function, and program state.

The control flow structures of a program
(text structure knowledge) are used initially
to construct mental representations of pro-
grams during the study task. Data flow and
functional representations (plan knowledge)
form a situational model that is developed
later given more time and an appropriate
task.

Continuation of Table
Author Task Method Findings
Vessey (1987) Study, writing

code
After studying a program, expert and novice
participants were asked to reproduce a func-
tionally equivalent program (results in the
same output). The programs differed in
how well the program structure matched the
structures used in programming texts. Par-
ticipants then wrote their own routines to
perform a specified function.

Supports previous findings that experts out-
perform novices on recall tasks. Research
found that knowledge structures used by
programmers are not based on standardized
scripts, instead, programmers were found to
have great variation in their knowledge struc-
tures. Findings do not support the use of
debugging tasks to determine programmers’
knowledge structures.

Détienne (1988) Study Expert participants studied programs with
either meaningful or non-meaningful proce-
dure names, one line at a time. Lines were
revealed in two ways: predetermined order
and order requested by the participant. Ver-
bal protocol analysis was performed on par-
ticipants’ responses after each line.

Program comprehension requires comprehen-
sion of the program and application domains.
Schemas are activated top-down when pro-
grammers use “signposts” that exist in the
code, and bottom-up when the algorithm is
unfamiliar. Programmers adapt their exist-
ing schema using control and dataflow of the
program, and executing the program men-
tally.

Continuation of Table
Author Task Method Findings
Gilmore & Green
(1988)

Debugging Expert participants were given the program
specification for the problem and a sample
of a correct program to study. Participants
were then given programs with bugs that met
the same specifications as the correct pro-
gram, but with different structural formats
(plan structure, control flow structure). Par-
ticipants were asked to locate and describe
the bugs in the program. The error detec-
tion rate of participants was measured.

Results of the study indicate that experts
use plan structures that provide a surface
level representation of a program. Program-
ming plans are language specific and are used
to map problem solving knowledge to imple-
mentation of the solution in a programming
language.

Vihmalo & Vih-
malo (1988)

Study, modifica-
tion

At timed intervals during think-aloud study
task, novice and expert participants gave de-
scriptions of the program. To assess their
understanding participants were then asked
to: describe from memory what the program
does and how it functions, write a portion of
the program from memory, and modify the
program.

Introduces a compensatory comprehension
strategy that is used by expert program-
mers to compensate for lack of program-
ming language knowledge. The strategy in-
volves reliance on knowledge about the pro-
gram’s application domain and the program
type. Results indicate the importance of
programming knowledge organization in pro-
gram comprehension.

Continuation of Table
Author Task Method Findings
Davies (1990b) Reconstructing Novice, intermediate, and expert program-

mers were given a program with a fragment
missing and were then asked to select from a
set of program fragments as quickly as pos-
sible the fragment that completes the pro-
gram. One set of program fragments either
used typical plan structures or violated plan
structures, and another set of program frag-
ments either followed program discourse rules
or violated them.

Expert and intermediate programmers both
use plan structures in program comprehen-
sion, however intermediate programmers are
not able to access these plans as easily as
experts. Novices do not possess plan struc-
ture knowledge. Experts use program dis-
course rules during program comprehension,
whereas intermediate and novice program-
mers do not.

Davies (1990a) Debugging Programmers that all had similar program-
ming experience and either had program de-
sign experience or not, were asked to locate
and correct bugs in programs. The pro-
grams contained bugs related to either: con-
trol structure, plan structure, or unrelated to
any structure. Cues were used to highlight ei-
ther the control structure or plan structure,
or no cues were provided. Programmers with
similar programming experience but either
had design experience or not, were shown
programs written in either a plan or unplan-
like way and were asked to recall the program
verbatim.

Programmers with design experience use cues
related to plan structures to detect plan re-
lated bugs and recall more plan structures.
Results indicate that programming plans are
used in program comprehension by program-
mers trained in program design and are not
necessarily a characteristic of programming
expertise.

Continuation of Table
Author Task Method Findings
Détienne &
Soloway (1990)

Study Experienced programmers were given plan-
like and unplan-like versions of programs
with blank lines. Participants were asked to
think-aloud while completing the task of fill-
ing in the blanks with code to complete the
program.

Experts develop two types of representations
during program comprehension: goals and
plans, and data flow.

Guerin &
Matthews (1990)

Study Measured comprehension and recall of novice
and expert participants after studying pro-
grams that varied in one of the following
ways: the order of lines of code and modules,
semantic complexity, or substitution of code
with keywords. Comprehension was mea-
sured by the participant’s description of the
program function and operation.

Experts rely more heavily on program func-
tions for program comprehension, compared
to novices. Supports the theory that experts
use chunking as a comprehension strategy.

Robertson & Yu
(1990)

Study, classify Fortran and Pascal programmers were given
programs written in the language coinciding
with their background. Participants drew
lines in the code to divide it into its different
major sections and gave each section a de-
scriptive label. Participants then divide each
major section into subsections. Participants
were then asked to sort the programs into
groups that “work the same way”.

Programmers can use multiple structures to
represent code that are independent of lan-
guage. Programmers use plan-based rep-
resentations and task-based representations
when understanding code.

Continuation of Table
Author Task Method Findings
Bergantz & Hassell
(1991)

Study, modifica-
tion

Protocol analysis from the comprehension
phase was analyzed to derive a model.

Supports two-model theory (domain and pro-
gram) of comprehension for declarative lan-
guage Prolog. Function and data structure
relationships are used to develop a program
model.

Corritore &
Wiedenbeck (1991)

Study Novice programmers were asked to study
short and long programs, and answer com-
prehension questions related to each of the
five categories of program information: op-
erations, control flow, data flow, state, and
function. Participants then wrote a summary
of the program.

Results indicate that novices use a bottom-
up approach during program comprehension.
Novices construct a program model as their
mental representation. Novices with better
comprehension develop more abstract men-
tal representations based on function infor-
mation when comprehending short programs
but not with long programs.

Koenemann &
Robertson (1991)

Study, modifica-
tion

Verbal protocol analysis was performed on
experienced programmers while they com-
pleted one of the following modification tasks:
functional addition, enhancement, function-
ality change, or default value change.

Results indicate the comprehension process
involves use of beacons to generate hypothe-
sis about the functionality of code. Primar-
ily programmers use a top-down approach to
program comprehension but use bottom-up
strategies for failing or missing hypothesis or
to understand directly relevant code. The
scope of the comprehension process is deter-
mined by the type of modification task.

Continuation of Table
Author Task Method Findings
Koubek & Salvendy
(1991)

Modification Expert and super-expert programmers were
given a program and a modification task. Au-
dio and visual recordings of participants ver-
balizing their thought process as they com-
pleted the task were analyzed.

Experts use information specific to the modi-
fication task to create their initial representa-
tions, whereas super-experts initially create
a more general abstract representation of the
overall program.

Wiedenbeck (1991) Study Novice and advanced programmers were
given programs to study that either con-
tained beacons or disguised the beacons. In
the second study, novice and advanced pro-
grammers were given programs that were ei-
ther prototypical or non-prototypical. In the
third study, novice and advanced program-
mers were given code that either contained a
false beacon or did not. In these first three
studies participants completed three tasks:
described the program’s function, rated their
confidence in their understanding, and re-
called the program. In the final study, four
versions of a program, one correct and three
incorrect versions (missing lines of code),
were given to novice and advanced program-
mers to study. Participants were asked to
describe the function and if they felt the pro-
gram was incorrect to explain why.

Results indicate that beacons are used in
initial comprehension by programmers when
understanding code and can reduce the depth
of study and simulation required to under-
stand a program. Advanced programmers
can make better use of beacons and relied
more on beacons than novices. Alternatively,
false beacons tend to mislead programmers
about the program’s function.

Continuation of Table
Author Task Method Findings
Boehm-Davis,
Holt, & Schultz
(1992)

Modification Expert and novice programmers were tasked
with performing either a complex or simple
modification to programs written in the same
programming language, but using three types
of problems, and with three different struc-
tures: functional, object oriented, and in-line
code. After each modification, participants
were asked to recall segments of the code and
any relationships between the segments. Us-
ing the recalled segments and relationships
written on cards, participants were asked to
create a structure using the cards. The num-
ber of segments and relationships recalled,
and the depth and width of the structure
were analyzed.

Mental representations of experts are primar-
ily affected by the difficulty of the task: more
difficult tasks result in more complex repre-
sentations, whereas novices are primarily af-
fected by the surface structure of the code
and the content of the program. The re-
sults of the study also indicate that the more
time spent thinking about the problem pro-
duces more narrow representations, whereas
actively exploring and interacting with the
program while solving a problem produces
mental representations with more breadth
and depth.

Continuation of Table
Author Task Method Findings
Fix, Wiedenbeck, &
Scholtz (1993)

Study Expert and novice programmers studied a
program for understanding and were then
asked comprehension questions. The ques-
tions were related to the five abstract char-
acteristics of mental representations that are
formed during program comprehension.

Results support the presence of five ab-
stract characteristics in mental representa-
tions formed by expert programmers: hier-
archical structure, explicit mapping of code
to goals, foundation on recognition of re-
curring patterns, connection of knowledge,
and grounding in the program text. Ex-
perts form mental representations containing
all five abstract characteristics. Representa-
tions formed by novices either do not contain
these characteristics or they are poorly devel-
oped.

Wiedenbeck, Fix, &
Scholtz (1993)

Study Expert and novice participants answered
comprehension questions after studying a
program.

Experts’ mental representations of programs
had more developed abstract characteristics:
hierarchical structure, mapping of code to
goals, recognition of recurring patterns, con-
nection of knowledge, and grounding in the
program text.

Continuation of Table
Author Task Method Findings
Davies (1994) Study Novice, intermediate, and expert program-

mers were presented with programs that they
were asked to memorize. Participants were
then presented with either focal (more im-
portant) or non-focal lines and asked if they
were from the program the participants had
memorized.

Novices do not possess complete schematic
representational structures. Expert and
intermediate programmers use schematic
representational structures of programming
knowledge to understand programs. In ad-
dition, experts use knowledge restructuring
by mapping focal structures of a program to
an internal representation of schematic pro-
gramming knowledge.

Teasley (1994) Study Novice programmers were given programs
that had either meaningful or nonsense vari-
able names to study and were then asked
comprehension questions based on four cat-
egories of program information: operations,
control flow, state, and function.

Results indicate that variable naming style
has no affect on experienced programmers
but adversely affects novices’ acquisition of
program function knowledge and not lower-
level knowledge. Novice programmers ac-
quire different types of knowledge at simi-
lar rates. Experienced programmers acquire
function knowledge bottom-up whereas the
other types of knowledge are acquired at a
similar rate.

von Mayrhauser &
Vans (1994)

Study, mainte-
nance

Verbal protocol analysis was used to deter-
mine the models formed by programmers
while studying the code for understanding in
order to perform a maintenance task. Partic-
ipants had varying levels of expertise, mea-
sured by prior knowledge of the code (pro-
gram knowledge) and domain knowledge.

Presents an integrated model of program
comprehension consisting of: program model,
situation model, top-down (domain) model,
and knowledge base. Programmer switches
between levels of abstraction/models.

Continuation of Table
Author Task Method Findings
Burkhardt &
Détienne (1995)

Reuse Verbal protocol analysis was performed on
expert object oriented programmers who
were asked to design a solution to a problem.
Participants were required to complete the
task while alternating between design phases
(analyzing the problem and developing a so-
lution) and reuse phases (describing elements
the designer would want to re-use from a li-
brary).

Results indicate that experts use dynamic
mental representations more during the de-
sign activity than the reuse activity, and ei-
ther a top-down or bottom-up approach may
be used in the reuse activity.

Davies, Gilmore, &
Green (1995)

Study, classify Expert and novice participants studied and
then sorted code fragments into classifica-
tions of their choice, providing reasons for
their decisions. Participants were then given
the option to subdivide any of the classifica-
tions and to give their reasoning if they chose
to subdivide.

Experts classified mostly based on func-
tional relations and novices classified mostly
based on object oriented (OO) classifications.
Experts produced more syntactic classifica-
tions, whereas novices produced more seman-
tic classifications. Supports findings that ex-
perts can form multiple knowledge represen-
tations of the same code. Does not support
the claims that the OO paradigm is represen-
tative of the cognitive structure of program-
mers.

Continuation of Table
Author Task Method Findings
Green & Navarro
(1995)

Study Participants had varying levels of program-
ming experience and varying levels of ex-
pertise in the three programming paradigms
studied: textual, spreadsheet, and visual pro-
gramming. Participants studied a program
one fragment at a time and were then asked
comprehension questions to verify their un-
derstanding of the program. Participants
then asked to rate the closeness of relation-
ship between pair fragments.

Results indicate that different aspects of the
schema are emphasized depending on the
programming paradigm. Textual paradigms
elicit representations that match the goal
structure, spreadsheet paradigms elicit rep-
resentations that match the object struc-
ture, and the visual paradigms elicit repre-
sentations that combine both goal and object
structures.

Continuation of Table
Author Task Method Findings
Schömann (1995) Study Advanced programmers had prior knowledge

of multiple programming languages, novice
programmers only knew the language used
in the study. Both groups had the same
level of knowledge in the language used in
the study. Advanced and novice program-
mers were shown a program three times and
were asked to recall as much of the program
as possible after each showing. In a sec-
ond experiment, advanced and novice pro-
grammers were given a program to study,
answered comprehension questions about the
program, and were then shown segments of
code and asked to decide as quickly as pos-
sible if they were from one of the programs
they studied. Both experiments concluded
with an interview of the participants about
their encoding and retrieval strategies.

Experts use a schema-driven knowledge or-
ganization when understanding programs.
Novices use a bottom-up strategy during pro-
gram comprehension, whereas experts use a
top-down strategy and are able to recon-
struct the programs instead of relying on the
learned program code. Advanced program-
mers are able to transfer knowledge between
programming languages.

Shaft & Vessey
(1995)

Study Verbal protocols were used to analyze the
comprehension strategy of expert partici-
pants by determining the tracing process.
Participants answered comprehension ques-
tions related to each abstraction (function,
data flow, control flow, and state).

The comprehension strategy used is depen-
dent on familiarity with domain knowledge
when it is relevant to understanding the pro-
gram. Results suggest the use of top-down
strategy with familiar domain and the use of
bottom-up strategy with unfamiliar domain.

Continuation of Table
Author Task Method Findings
Snyder (1995) Modification Think a-loud was used during the modifica-

tion task, and a questionnaire was used to
measure comprehension of novice and expert
participants.

Supports the claim that modification tasks
require identifying relationships between four
dimensions of program information (data
flow, control flow, state, and functionality).
Program comprehension is limited to the
scope of the modification task. Ability to
trace de-localized program information is de-
pendent on expertise.

von Mayrhauser &
Vans (1995)

Study, mainte-
nance

Verbal protocol analysis was performed on
experienced programmers while they worked
on understanding code they would be respon-
sible for maintaining. Participants had vary-
ing amounts of previous experience with the
code.

Results support the integrated comprehen-
sion model. Programmers that maintain
code build a mental program model, situa-
tion model, and domain model by switching
frequently between these three levels of ab-
straction.

Vans (1996) Maintenance A protocol analysis was performed on expert
participants’ verbalization of their thoughts
as they worked on maintenance tasks.

Findings are based on assumptions of the
Integrated Code Comprehension Model that
has models at different levels of abstraction:
program model (low), situation model (in-
termediate), top-down model (high). Lev-
els that programmers work at and switch be-
tween are based on experience and task.

Continuation of Table
Author Task Method Findings
von Mayrhauser &
Vans (1996)

Study, mainte-
nance

Verbal protocol analysis was performed on
experienced programmers while they worked
on understanding code they would be respon-
sible for maintaining. Participants had vary-
ing amounts of previous experience with the
code.

Results support the integrated comprehen-
sion model where programmers use a multi-
level approach to program understanding by
switching between program, situation, and
domain (top-down) models. Large-scale code
requires more knowledge at the domain level.

Ye & Salvendy
(1996)

Study Novice and intermediate programmers were
given the code for a program that was di-
vided into numbered segments using a hier-
archy of program plans. They were also given
a random list of plan goals and were asked to
match each program plan (segment of code)
to its goal. The sequence in which code seg-
ments were matched to goals was observed.

Intermediate and novice programmers use
a top-down strategy during program com-
prehension. Intermediate programmers use
a more consistent top-down, depth-first ap-
proach whereas novices are less consistent,
using more opportunistic strategies.

Barfield (1997) Recopy Measured glances and time between glances
while expert and novice participants recopied
lines of code that were in view. After the re-
copy task, participants were asked to recall
the program verbatim from memory. The
program was presented either in executable
order, random chunks, or random lines.

Supports the chunking model used to encode
programs. Experts create larger chunks than
novices allowing them to encode more infor-
mation. Speculates that experts first encode
the plan or algorithm in the chunk, then en-
code the specific variable names used in the
chunk.

Continuation of Table
Author Task Method Findings
Burkhardt,
Détienne, &
Wiedenbeck (1997)

Study, documen-
tation, reuse

Verbal protocol analysis was performed on
expert and novice object oriented (OO) pro-
grammers during every phase. During the
first phase participants studied a program
and then answered comprehension questions.
For the second phase participants completed
either a documentation task or reuse task fol-
lowed by comprehension questions. The com-
prehension questions were related to the pro-
gram model and situation model.

Results indicate that OO programmers form
a more fully developed situation model early
in the comprehension process and the sit-
uation model continues to develop over
time whereas the program model remains
constant. Expert programmers develop a
stronger static situation model than novices.

Ramalingam &
Wiedenbeck (1997)

Study Novice participants answered comprehension
questions on object oriented (OO) programs
and imperative programs. Comprehension
questions were related to each of the follow-
ing knowledge categories: operations, control
flow, data flow, state, and function.

Novice programmers formed a program-level
mental representation when comprehending
imperative programs and a domain-level
mental representation when comprehending
OO programs.

von Mayrhauser,
Vans, & Howe
(1997)

Enhancement Protocol analysis was performed on expert
programmers while working on an enhance-
ment task.

Expert programmers perform actions at all
three levels of abstraction: domain (top-
down), situation, and program models, and
switch between these levels. Results support
the integrated comprehension model. While
performing enhancement tasks, programmers
perform more actions at the program and sit-
uation model levels.

Continuation of Table
Author Task Method Findings
Burkhardt,
Dt́ienne, &
Wiedenbeck (1998)

Study, documen-
tation, reuse

Expert and novice object oriented program-
mers were given programs to study and later
were asked to complete either a documenta-
tion or reuse task. Verbal protocol analysis
was performed on the participants and the
files accessed and transactions between files
were recorded.

Results indicate that experts use a top-down
approach initially during program compre-
hension to form an abstract representation,
and later focus on implementation details.
Novices do not use a top-down approach until
later in the comprehension process.

Furman (1998) Study Expert and novice participants were pre-
sented with search programs written in dif-
ferent forms where the lines of code were
either indented, left-justified, randomly in-
dented. The characters in the code were re-
placed with X’s and the user could select a
single line of code to reveal at a time. Mea-
sured the study time for individual lines of
code, time to select the next line of code to re-
veal, and number of lines of code revealed to
understand the code. For each form, partic-
ipants completed a comprehension test and
gave a subjective rating in terms of their like
or dislike, difficulty of the task, and fatigue
after completing the task.

Supports the theory that programmers use
chunking when understanding code. Expe-
rienced programmers like or dislike of a pro-
gram was more affected by form than novices.
Overall, participants had lower look times
and chose to reveal fewer lines when the pro-
gram was normally indented. Results indi-
cate that programmers use indentation to un-
derstand the sectioning of code into func-
tional units and that program forms con-
ducive to chunking improve program compre-
hension.

Continuation of Table
Author Task Method Findings
Shaft & Vessey
(1998)

Study Protocol analysis was performed on profes-
sional programmers while they studied pro-
grams written in either a familiar or unfamil-
iar domain. Participants answered compre-
hension questions related to each abstraction
(function, data flow, control flow, and state).

Results indicate that some programmers use
a flexible approach that involves using a
top-down process in a familiar domain and
bottom-up process in an unfamiliar domain,
while others use either a top-down or bottom-
up process regardless of familiarity. Pro-
grammers who use a flexible approach con-
struct mental representations that contain
connections between the domain and pro-
gram levels.

von Mayrhauser &
Vans (1998)

Maintenance Protocol analysis was performed on expert
programmers while working on an adaptive
maintenance programming task.

Results support the integrated model of com-
prehension. Expert programmers perform-
ing adaptive maintenance tasks on large scale
software, concentrate on the domain model
level to a greater extent than the program
and situation model level. Programmers
switch between all three levels of abstrac-
tion, using a combination of top-down and
bottom-up approaches during program com-
prehension.

Continuation of Table
Author Task Method Findings
Wong, Cheung, &
Chen (1998)

Study Participants, after studying a set of programs
for understanding, were shown the programs
again in a random order with either seman-
tic changes, surface changes, or no changes,
and were asked to identify the programs they
recognized. To determine if the same compre-
hension process is used for English language
processing, participants completed a lexical
decision task. Participant groups were ex-
pert, novice, and control.

Results provide supporting evidence that ex-
pert programmers are more likely to form
and use semantic representations of programs
during program comprehension. Experts’ re-
liance on semantic knowledge is specific to
processing computer programs and does not
transfer to English language processing.

Corritore &
Wiedenbeck (1999)

Study, mainte-
nance

Experts participants studied a program writ-
ten in a language coinciding with their
paradigm of expertise, object oriented (OO)
or procedural. Participants answered com-
prehension questions after the study phase
and after completing the modification phase.
Comprehension questions were used to mea-
sure the following knowledge categories: op-
erations, control flow, data flow, function,
and structure. The knowledge categories
were grouped to determine the model formed
after each phase.

Supports a mixed model representation con-
sisting of equally developed domain and pro-
gram models. Results indicate that OO pro-
grammers initially develop a strong domain
model after initial exposure and develop a
mixed model after repeated exposure. The
repeated exposure assists in developing their
program model, however, the emphasis re-
mains on the domain model. Procedural pro-
grammers develop a mixed model from the
initial exposure with an emphasis on the do-
main model.

Continuation of Table
Author Task Method Findings
Vans, von Mary-
hauser, & Somlo
(1999)

Maintenance A verbal protocol analysis was performed on
participants while carrying out a corrective
maintenance task. Participants had varying
levels of expertise, measured by prior knowl-
edge of the code (program knowledge) and
domain knowledge.

Results support the Integrated Comprehen-
sion Model and present hypotheses regarding
the relationship between programmer exper-
tise (domain and program knowledge), the
level of abstraction comprehension occurs at,
and the resulting model that is derived (pro-
gram, situation, domain). Experts in domain
and program knowledge can make connec-
tions and switch between all three levels of
abstraction.

Wiedenbeck & Ra-
malingam (1999)

Study Novice participants, categorized as object
oriented (OO) or procedural according to
their programming language training, stud-
ied a short, simple program and an-
swered comprehension questions from mem-
ory. Comprehension questions were from
the knowledge categories: operations, control
flow, data flow, and function.

Results indicate that less advanced novice
OO programmers form a stronger domain
model, and less advanced novice procedu-
ral programmers form a stronger program
model. More advanced novices regardless
of programming paradigm form a more bal-
anced representation that includes both pro-
gram and domain knowledge. Supports the
theory that program comprehension requires
well developed and connected program and
domain models.

Continuation of Table
Author Task Method Findings
Wiedenbeck,
Ramalingam,
Sarasamma, &
Corritore (1999)

Study Novice participants, categorized as object
oriented (OO) or procedural according to
their programming language training, stud-
ied a short, simple program and answered
comprehension questions from memory. Par-
ticipants then completed two study sessions
with a long, complex program and answered
the same comprehension questions after each
study session. The code was provided for the
final set of comprehension questions. Com-
prehension questions were from the knowl-
edge categories: operations, control flow,
data flow, and function.

Results indicate that novice OO program-
mers develop a stronger domain model than
novice procedural programmers during com-
prehension of short programs. During the
comprehension of long programs, novice pro-
cedural programmers developed a stronger
program model compared to their domain
model. Novice OO programmers did not have
a more developed domain model than proce-
dural programmers for the long program.

Continuation of Table
Author Task Method Findings
Corritore &
Wiedenbeck (2001)

Study, mainte-
nance

Expert participants studied and performed
maintenance tasks on programs written in a
language coinciding with their paradigm of
expertise, object oriented (OO) or procedu-
ral. Participants completed a study session
followed by two modification sessions com-
pleted over a longer period of time. The doc-
uments participants accessed and their ac-
tions during the tasks were analyzed.

The results indicate that the direction of
comprehension is affected by the program-
ming paradigm, time, and task. Program-
mers, and to a greater extent OO program-
mers, use a top-down strategy during initial
comprehension of a program, switching to
a bottom-up strategy as their knowledge of
the program increases over time, and given
a motivating task. Programmers develop a
wide breadth of understanding by initially us-
ing a broad comprehension strategy, that is
more pronounced with procedural program-
mers, and over time use a more narrow, fo-
cused strategy.

Mosemann &
Wiedenbeck (2001)

Study Novice participants studied a program us-
ing either sequential, control flow, or data
flow navigation. The number of correct re-
sponses and response times to comprehension
questions answered from memory were mea-
sured to determine the mental representa-
tion formed. Questions were related to each
of the five comprehension categories: mod-
ule sequential, control flow, data flow, global
goals, and operations.

Supports the claim that novice program-
mers construct mental models of the basic
text structures using a bottom-up (sequential
navigation) or top-down (control flow naviga-
tion) approaches. Data flow navigation is the
least effective navigation method for assisting
novices in developing mental models.

Continuation of Table
Author Task Method Findings
Navarro-Prieto &
Cañas (2001)

Study, modifica-
tion

Participants of varying expertise studied or
modified programs in the language paradigm
of their expertise, visual or procedural. To
determine the mental representation devel-
oped by the participants, the results of a
primed recognition task and a grouping task
were analyzed.

Visual programmers develop stronger men-
tal representations than procedural program-
mers. Procedural programmers’ control flow
structures are more developed than their
data flow structures, whereas visual program-
mers develop both structures equally well.
Procedural programmers focus on control
flow information whereas visual programmers
focus on data flow information.

Continuation of Table
Author Task Method Findings
Romero (2001) Study Experienced and novice Prolog programmers

were asked to study a program and then
recall the code and describe the program’s
function. The recall of key segments and
non-key segments of four structural models
of comprehension (plans, techniques, data
structure schemas, and recursion points), and
their ability to identify the function were
measured. Experienced and novice Prolog
programmers were asked to study a program
with either meaningful or cryptic naming
styles. Participants were then shown seg-
ments of code that related either to focal ele-
ments of plans or focal elements of data struc-
ture schemas and asked if they appeared in
the program they had studied. Finally, par-
ticipants answered comprehension questions
related to functional aspects and data struc-
ture issues.

Extends the knowledge restructuring the-
ory that experienced programmers restruc-
ture their knowledge according to the type
of programming information (plans, function,
and data structure). Proposes data struc-
ture schemas as a model of structural knowl-
edge for Prolog programmers while recogniz-
ing that plan and function information are
also important.

Continuation of Table
Author Task Method Findings
Burkhardt,
Détienne, &
Wiedenbeck (2002)

Study, documen-
tation, reuse

Novice and expert object oriented (OO) pro-
grammers were given either a documenta-
tion task or a reuse task. Completion of the
tasks were divided into two phases, a study
phase followed by the task phase. Partic-
ipants were asked comprehension questions
after each phase related to the program and
situation model.

Expertise effects the construction of the situ-
ation model but not the program model dur-
ing a documentation task. Stronger situa-
tion models are formed by both experts and
novices during reuse task, and the difference
in their models decrease over time as novices
improve their situation model given a task
that requires situation knowledge.

Khazaei & Jackson
(2002)

Study Novice programmers that had experience
with both event-driven (ED) and object ori-
ented (OO) programming paradigms were
given a program to study a set of comprehen-
sion questions to answer. Each participant
studied and answered comprehension ques-
tions for both ED and OO programs. Com-
prehension questions were related to elemen-
tary operations, control flow, data flow, func-
tion, and state.

Novice programmers form stronger control
flow, function, and data flow models for ED
programs. Novice programmers form weak
elementary operations models and strong
state models for both ED and OO programs.
Overall, novices form a stronger model of
data flow.

Continuation of Table
Author Task Method Findings
Parkin (2004) Maintenance Experienced programmers completed either a

corrective or enhancement maintenance task.
Software was used to track the actions of
the programmers while they completed their
task.

Experienced programmers completing cor-
rective maintenance tasks initially use top-
down comprehension strategies to develop
a domain-level model before constructing
a program-model. When completing en-
hancement maintenance tasks, programmers
switch from top-down to bottom-up strate-
gies earlier in the program comprehension
process.

Romero & Du
Boulay (2004)

Debugging Expert and novice programmers were asked
to read the program specification, they were
then given the program code and were asked
to determine if the code met the specifica-
tion. The programs each contained three er-
rors: plan, schema, and other.

Mental representations formed by expert
Prolog programmers are hierarchically orga-
nized based on data structure.

Sajaniemi & Prieto
(2005)

Study, modifica-
tion, classify

Expert programmers were given a program
to study for understanding and completed
a modification task. Participants were then
given cards with the name of each variable
from the program and were asked to sort the
cards into groups such that similar variables
were in the same group. Participants then
wrote an explanation for the groups and ex-
plained during an interview their sorting cri-
teria and the contents of each group.

Expert programmers use programming
knowledge in the form of plans combined
with behaviour to develop four categories for
representing variables in a program: domain-
based, technology-based, execution-based,
and strategy-based.

Continuation of Table
Author Task Method Findings
Fan (2010) Study, debugging Participants studied a program and com-

pleted a recall test from memory. Dur-
ing another session, participants located er-
rors in a program and provided corrections.
The programs were written in two versions;
with comments and without comments. Eye-
movement data, time, and scores on tasks
were recorded.

Results suggest that comments can im-
prove comprehension by assisting program-
mers with the chunking process and reduc-
ing memory load depending on how they are
used and the programmer’s familiarity of the
domain. Findings indicate that the beacons
identified by programmers is dependent on
the task.

Alardawi & Agil
(2015)

Study Novice object oriented (OO) programmers
studied programs written with the use of
class structure and without class structure.
Participants were asked comprehension ques-
tions related to elementary operation, control
flow, data flow, function, state, and problem
classes’ category knowledge.

Programs containing class structure allow
novice OO programmers to form stronger
mental representations during program com-
prehension.

Nosál & Porubän
(2015)

Study, modifica-
tion

Programmers with varying levels of exper-
tise were asked to think-a-loud while study-
ing a program for understanding. Partici-
pants were then asked to think-a-loud while
modifying the program. Participants then
answered comprehension questions.

Results support the four-layer mental model
created using a hypothesis-based approach
to program comprehension given that the
programmer possesses the necessary domain
knowledge. The four-layer model consists of
two layers in the problem domain: problem
and features/concepts, and two layers in the
solution domain: plans/beacons and source
code.

End of Table

