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Abstract—The sixth-generation (6G) communication technol-
ogy has been attracting great interests from both industry and
academia, as it is regarded as a promising approach to achieve
more stable and low-latency communication. These promising
features of 6G make it an enabler for cybertwin, a technique to
create digital representations for physical objects to implement
various functionalities. In this article, we consider a cybertwin-
based spatiotemporal keyword query service over a dynamic
message data set in intelligent transportation system (ITS) sce-
narios. Particularly, in the considered service, publishers upload
messages to the cloud, and each cybertwin predictively launches
queries to retrieve messages on behalf of the corresponding vehi-
cle, such that each vehicle can timely receive messages that are
of its interest whenever it arrives at a location. Nevertheless,
as the cloud is not fully trustable, there exist privacy concerns
related to the messages and queries. Up to now, although many
schemes have been proposed to handle privacy-preserving spatial,
temporal, or keyword queries, none of them can simultane-
ously support queries containing both spatial, temporal, and
keyword criteria on dynamic data sets. Aiming at the issue,
we design a layered index based on segment trees to dynami-
cally organize messages containing both spatial, temporal, and
keyword information. Moreover, based on a symmetric homo-
morphic encryption scheme, we encrypt the messages and queries
and present a two-server privacy-preserving spatiotemporal key-
word query scheme. We analyze the security of the proposed
scheme and also conduct extensive experiments to evaluate its
performance. The results show that our proposed scheme is
indeed privacy preserving and computationally efficient.

Index Terms—Cybertwin, intelligent transportation system
(ITS), privacy-preserving, sixth-generation (6G), spatiotemporal
keyword query.

I. INTRODUCTION

DRIVEN by the pressing need for connectivity with
diverse requirements, wireless communication tech-

niques have been evolving for centuries and, in return, they
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boost the deployment of connected devices together with
information technology. The fifth-generation (5G) technology
standard, as the latest generation of wireless technology, has
been estimated to reach a market size of U.S. $41.48 billion
by 2020 and expand at a compound annual growth rate of
43.9% from 2021 to 2027, as reported in [1]. Although it
significantly benefits our daily lives by enabling connections
between heterogeneous devices, there are still many challenges
ahead, e.g., lower latency, higher data rates, and wider cov-
erage. Therefore, as its successor, sixth generation (6G) has
been attracting interests from both industry and academia,
and it is expected to achieve low-latency communication and
highly dynamic network topology. These features make 6G
an enabler for various applications that rely heavily on stable
and low-latency communications, such as cybertwin consid-
ered in this work [2]. Cybertwin is regarded as a promising
technique [3] to create digital representations for physical
objects to implement various functionalities, e.g., communi-
cation anchors. Furthermore, by leveraging the computational
resource, a cybertwin can predict the future state of the cor-
responding physical object and take some predefined actions
based on the prediction [4]. Fig. 1 shows the architecture of a
general 6G-based cybertwin application in the intelligent trans-
portation system (ITS). Based on this architecture, we consider
a cybertwin-based spatiotemporal keyword query service. In
the service, a cloud is employed for an enhanced quality of
service and flexible computational resources, similar to many
other query services [5]–[7]. Then, vehicles in the scenario
are the physical objects and each vehicle has a cybertwin,
and a set of publishers deliver messages to the authorized
vehicles through the cloud. Specifically, the publishers upload
their messages to the cloud, and each cybertwin predicts the
future locations of the corresponding vehicle and pulls the
messages that may be of interest to the vehicle. In this way,
not only each vehicle can promptly receive the messages of its
interest whenever it arrives at a location, but the cybertwins
can also mine some insights from these messages to assist driv-
ing [8]. For instance, by collecting messages related to traffic,
the cybertwin can select the best route among several candi-
date routes and push the resulting route to the corresponding
vehicle.

While enjoying the cybertwin-based spatiotemporal key-
word query service, the publishers and the vehicles have their
own privacy concerns, as the cloud is not fully trustable.
On the one hand, the messages are private to the publish-
ers and should only be available to authorized users. On the
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Fig. 1. Architecture of 6G-based cybertwin applications in the ITS scenario.

other hand, the queries submitted by the cybertwins should
be protected. Otherwise, the locations and other information
included in the queries may be revealed to the cloud and other
adversaries, which may be exploited for further attacks and
put the vehicles and drivers in danger. Therefore, both the
messages and the queries need to be encrypted before being
uploaded to the cloud. However, it is commonly acknowl-
edged that encryption techniques inevitably hinder the cloud
to conduct queries. As detailed in Section VII, although many
schemes [9]–[26] are proposed to support queries with spa-
tial, temporal, or keyword criteria, they cannot be efficiently
applied to our scenario. Some of them [9]–[19] can only sup-
port queries with spatial or spatio-textual queries over static
data sets. Some others [20]–[26] can only support queries with
multiple keywords over dynamic data sets. Adapting these
works to handle spatiotemporal keyword query is inefficient,
as it needs to additionally choose a large number of keywords
to represent areas and time periods. As a result, the existing
works cannot be efficiently adapted to support spatiotemporal
keyword queries over a dynamic data set. Thus, querying with
both spatial, temporal, and keyword conditions over a dynamic
data set is still challenging.

To address the above challenges, we present our privacy-
preserving cybertwin-based spatiotemporal keyword query
scheme for ITS scenarios. The main contributions of this
article are fourfold.

1) First, we design a layered data structure based on
segment trees for dynamically indexing the messages
posted by the publishers, and the index can efficiently
support queries containing both spatial, temporal, and
keyword criteria.

2) Second, we propose two algorithms to, respectively,
encrypt the index and queries. These two algorithms
are characterized by outputting ciphertexts of a sym-
metric homomorphic encryption (SHE) scheme without
knowing the secret key.

3) Third, we present our proposed cybertwin-based privacy-
preserving spatiotemporal keyword query scheme to
index messages and conduct queries over the messages
while preserving the privacy of both the messages and
the queries.

4) Finally, we analyze the security of our proposed scheme
and conduct extensive experiments to demonstrate the
efficiency of our proposed scheme. The results show that
our proposed scheme is indeed privacy preserving and
computationally efficient.

The remainder of this article is organized as follows. In
Section II, we introduce our system model, security model,
and design goal. After that, we review some preliminaries in
Section III. In Section IV, we present our proposed scheme,
followed by its security analysis and performance evaluation,
respectively, in Sections V and VI. Then, we present some
related work in Section VII. Finally, we draw our conclusion
in Section VIII.

II. MODELS AND DESIGN GOAL

In this section, we formalize our system model and security
model and identify our design goal.

A. System Model

In our system model, we consider a privacy-preserving
cybertwin-based spatiotemporal keyword query scenario in
ITS, which contains five types of entities, namely, a ser-
vice provider, a set of publishers, a cloud consisting of two
servers {CS1, CS2}, a set of vehicles, and a set of cybertwins
corresponding to the vehicles, as shown in Fig. 2.

1) Service Provider: The service provider outsources the
privacy-preserving cybertwin-based spatiotemporal keyword
query service to the cloud, and it is responsible for set-
ting up the whole system. That is, it will generate and
securely distribute secret keys to each entity in the system.
Moreover, it partitions the city map into several regions
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Fig. 2. System model under consideration.

TABLE I
FORMAT OF A PUBLISHED MESSAGE mi

R = {R1, R2, . . . , R|R|} based on historical data, such that
each region Ri ∈ R roughly has a similar rate of new
messages.

2) Publishers: Each publisher continuously publishes mes-
sages to authorized vehicles through the cloud. Specifically, a
message mi = (ci, Li, Wi, dt, ti, t̂i) has six attributes, namely:
1) its content ci; 2) its location Li; 3) its related keywords Wi;
4) its release date dt; 5) its release time ti; and 6) its expire
time t̂i, as shown in Table I.

3) Cloud: The cloud contains two servers {CS1, CS2} and
runs the outsourced spatiotemporal keyword query service. In
specific, it stores the messages published by the publishers,
and on receiving a spatiotemporal keyword query request,
it responds with a set of messages satisfying the request.
Specifically, given a spatiotemporal keyword query request
(Lq, tq, t̂q, Wq, dt), the cloud responds a set of messages sat-
isfying that: 1) they are in the same region as Lq; 2) they are
published after tq; 3) they are valid at t̂q; and 4) each of them
contains all keywords in Wq.

4) Vehicles and Cybertwins: To continuously obtain mes-
sages related to its location and keywords without constantly
querying the service, each vehicle in the system deploys a
cybertwin to predictively query the service, and the cybertwin
locates in the cloud but has a safe and isolated environ-
ment. In specific, each vehicle V maintains a secure and
stable connection to its cybertwin and continuously updates
its location and keywords {Lv, Wv} to the cybertwin. Then,
the latter predicts a set of the vehicle’s future locations
˜Lv = {(Lv,k, tk) | k = 1, 2, . . .}, where each tuple (Lv,k, tk) rep-
resents that a possible location of V at time tk. After that, for

each (Lv,k, tk) ∈˜Lv, the cybertwin periodically queries the ser-
vice to retrieve the messages at location Lv,k and will be valid
at tk. Moreover, to improve the query efficiency, the cyber-
twin only requests messages that are newly published since
the last query, i.e., ti > told, where told is the timestamp when
the last query is submitted. That is, for each location tuple
(Lv,k, tk), the cybertwin launches a spatiotemporal keyword
query Qk = (Lq = Lv,k, tq = told, t̂q = tk, Wq = Wv, dt).

Communication Model: By employing 6G communication
and mature authentication techniques, we assume reliable com-
munication channels can always be established: 1) between
each vehicle and its cybertwin; 2) between each cybertwin
and the cloud; and 3) between each publisher and the cloud.

B. Security Model

In our security model, the service provider is trusted, since
he/she owns the service and has no motivation to deviate
from it. That is, it will honestly generate and distribute secret
keys for all entities in the system. Similar to many existing
works (e.g., [6], [27], and [28]), the publishers, vehicles, and
cybertwins are authorized by the service provider and will
be punished if they deviate from the protocol, so they are
considered to be honest. Specifically, the publishers will hon-
estly publish messages with correct locations and keywords
to the cloud; the vehicles will faithfully update their locations
and selected keywords to the corresponding cybertwins; and
the cybertwins will honestly query the service and push the
query results to the vehicles when they are near the messages’
locations. However, the two servers in the cloud are honest-
but-curious. In specific, although they will faithfully respond
to the queries from cybertwins with correct results, they might
be curious about the plaintexts of the messages published by
the publishers and the vehicles’ keywords and predicted loca-
tions. Nevertheless, they will not collude with each other. This
assumption is reasonable as it captures the limitations of real-
world adversaries’ power. Note that the external attackers may
also launch other active attacks, e.g., Denial of Service (DoS)
attacks, to the network. Since this work focuses on privacy
preservation, those attacks are beyond the scope of this article
and will be discussed in our future work.

C. Design Goal

The design goal of this work is to present a privacy-
preserving cybertwin-based spatiotemporal keyword query ser-
vice to meet the requirements defined in the system model and
security model. In specific, the proposed scheme should have
the following two properties.

1) Proposed Scheme Should Be Privacy Preserving: The
cloud servers should not be able to obtain the contents,
locations, and related keywords of the published mes-
sages, and the queries’ locations and keywords. As for
the release date and time, they are close to the date
and time when the cloud servers receive the encrypted
message but are less likely to reveal the content of the
message. Hence, we will not protect these two fields
of messages.
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Fig. 3. Example of a segment tree with four records [a1, a2, a3, a4].
With the segment tree, f (a1, a2, a3) can be computed as f (a1, a2, a3) =
f (f (a1, a2), f (a3)).

2) Proposed Scheme Should Be Efficient: To achieve pri-
vacy preservation in the cybertwin-based spatiotemporal
keyword query service, some cryptographic techniques
need to be employed. However, since our work focuses
on the ITS scenario, its efficiency should be taken into
consideration. That is, to make the scheme practical, its
computational cost should be minimized.

III. PRELIMINARIES

In this section, we recall several techniques that will be
used in our proposed scheme, namely, segment trees, a SHE
scheme [29], two SHE-based privacy-preserving protocols, and
the Bloom filter technique.

A. Segment Tree

A segment tree is a binary tree-based data structure for con-
ducting efficient range aggregation queries on a sequential data
set, in which the range aggregation function f (·) satisfies

f (U) = f (f (S1), f (S2), . . . , f (Ss)),

where the set U = S1 ∪ S2 ∪ · · · ∪ Ss,

and any two subsets Si ∩ Sj = ∅, for 1 ≤ i < j ≤ s.

As illustrated in Fig. 3, a segment tree consists of two types
of nodes, namely, inner nodes and leaf nodes. Each leaf node
represents a data record in the data set, and each inner node
stores the result of applying the selected range aggregation
function f (·) on its child nodes. Then, based on the properties
of segment trees, a query can be conducted by applying f (·) to
the results in a set of nodes that can precisely cover the query
range. For example, to obtain f (a1, a2, a3) in the segment tree
in Fig. 3, we can compute f (f (a1, a2), f (a3)). Generally, when
the range length of a query is L, the computational complexity
of conducting a query on the given range is 2(�log L	 − 1) =
O(log L). Hereinafter, we refer to a forest of segment trees
descendingly sorted by their heights as a segment forest for
the simplicity of description.

B. Symmetric Homomorphic Encryption

SHE is a SHE scheme [29], which is proved to be indis-
tinguishable chosen plaintext attack (IND-CPA) secure [30].
It comprises the following three algorithms, namely, key
generation, encryption, and decryption.

1) Key Generation: Given three security parameters
(k0, k1, k2) satisfying k1 
 k2 < k0, the algorithm generates
the secret key SK = (p, q,L), where p and q are two large
prime numbers with |p| = |q| = k0 and L is a random num-
ber of bit length |L| = k2. After that, it computes N = pq
and sets the public parameter PP = (k0, k1, k2,N ). Then, the
basic message space M is [− 2k1−1, 2k1−1).

2) Encryption: With the secret key SK = (p, q,L), a mes-
sage m ∈M can be encrypted into a ciphertext c = E(m) =
(rL+m)(1+ r′p) mod N , where r ∈ {0, 1}k2 and r′ ∈ {0, 1}k0

are two random numbers.
3) Decryption: With the secret key SK = (p, q,L), the

plaintext m of a ciphertext c can be recovered by computing
m = D(c) = (c mod p) mod L. Since k1 
 k2 < k0, we have
m+ rL < p and m < L. Then, we can verify the correctness
of the decryption as follows:

D(c) = (c mod p) mod L = (rL+ m) mod L = m.

Given two ciphertexts c1 = E(m1) and c1 = E(m2), or a
ciphertext c1 and a plaintext m2, the SHE scheme supports
the following nice two homomorphic addition (Homo-Add)
properties and two homomorphic multiplication (Homo-Mul)
properties as follows: 1) Homo-Add-I: c1 + c2 mod N →
E(m1 + m2); 2) Homo-Mul-I: c1 · c2 mod N → E(m1 · m2);
3) Homo-Add-II: c1 + m2 mod N → E(m1 + m2); and
4) Homo-Mul-II: c1 · m2 mod N→E(m1 · m2) when m2 > 0.

Note that after σ times of Homo-Mul-I operations, the bit
length of rL in the resulting ciphertext will be 2(σ + 1) · k2.
To correctly decrypt the ciphertext, we need to ensure that
αL < p, i.e., 2(σ + 1) · k2 < k0. Hence, SHE’s maximum
depth of multiplication σ = 
(k0/2k2)− 1�.

C. Two SHE-Based Privacy-Preserving Protocols

Based on the above SHE scheme, we introduce two privacy-
preserving protocols, namely, a bootstrapping protocol and
a sign calculating protocol. Both of the protocols are run
between CS1 and CS2. Before running these protocols, the
two cloud servers hold some secrets distributed by the service
provider. Specifically, CS1 holds {PP, E(0)1, E(0)2, E(−1)},
while CS2 holds SK of the SHE scheme.

1) Protocol 1 (Privacy-Preserving Bootstrapping Protocol):
Given the security parameters {k0, k1, k2}, the SHE scheme
can only support a limited number of multiplications on one
ciphertext, as analyzed in Section III. Therefore, the boot-
strapping protocol is employed to support infinite numbers
of multiplications. Initially, CS1 holds a ciphertext c = E(m),
and CS2 holds the corresponding private key SK. After run-
ning the protocol, CS1 will obtain a new ciphertext c′ = E(m)

with the same plaintext m while CS2 knows nothing about m.
Specifically, the protocol runs in the following steps.

Step 1: Given c = E(m), CS1 homomorphically computes
c̃ = E(m + r), where r ∈ {0, 1}k2−2 is a random
number. After that, it sends c̃ to CS2.

Step 2: On receiving c̃, CS2 decrypts it to obtain m̃ =
D(c̃) = m + r. Then, it sends a ciphertext of m̃
encrypted by the private key SK, i.e., c̃′ = E(m̃),
to CS1.
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Step 3: Based on the received c̃′, CS1 recovers the boot-
strapped ciphertext c′ as c′ = c̃′ − r = E(m).

Correctness: The goal of the privacy-preserving bootstrap-
ping protocol is to securely decrypt and re-encrypt a ciphertext,
so its correctness holds iff : 1) CS2 can correctly recover
the garbled plaintext m′ = m + r, i.e., D(c̃) = m̃ and
2) after running step 3, the ciphertext obtained by CS1 can
be correctly decrypted, i.e., D(c̃′) = m. Since m ∈ M and
r ∈ {0, 1}k2−2, we have m + r < L. Thus, CS2 can correctly
recover m̃ = m+ r by running the decryption algorithm of the
SHE scheme. Similarly, as m + r < L, we can deduce that
(m+ αL− r) mod n < p holds. Therefore, c′ = c̃′ − r can be
correctly decrypted.

2) Protocol 2 (Privacy-Preserving Sign Calculating
Protocol): The privacy-preserving sign calculating protocol is
to securely compute the encrypted sign of a given ciphertext’s
plaintext. That is, given a ciphertext c = E(m), after running
the protocol with CS2, CS1 can obtain E(sign(m)), where
sign(m) = 1 if m ≥ 0, or sign(m) = 0 otherwise.
Specifically, the protocol runs in the following steps.

Step 1: Given c = E(m), CS1 first computes

c̃ =
{

r1 · E(m)+ r2 mod N , b = 1
E(−1) · (r1 · E(m)+ r2) mod N , b = 0

where r1 and r2 are two random numbers satisfying
0 < r2 < r1, r1 ∈ {0, 1}k2−k1−1, and b ∈ {0, 1} is a
random bit. Then, it sends c̃ to CS2.

Step 2: Upon receiving c̃, CS2 decrypts it to obtain m̃ =
D(c̃) = (−1)1−b(r1m+r2) mod L. If m̃ < (L/2), it
sets c̃′ = E(1); otherwise, it sets c̃′ = E(0). Finally,
CS2 sends c̃′ to CS1.

Step 3: Based on the received c̃′, CS1 computes c′ =
E(sign(m)) = 1− b+ c̃′ · (2b+ E(−1)).

Correctness: The correctness of the privacy-preserving sign
calculating protocol holds iff c′ satisfies that D(c′) = 1 when
m ≥ 0, and D(c′) = 0 otherwise. Then, we first show the
relationship between m and c̃′ in the following two cases.

1) When the Random Bit b = 1: By keeping m = |m| when
m ≥ 0 and computing m = L− |m|; otherwise, we have

m̃ = D(c̃)

=
{

r1 · |m| + r2 mod L, if m ≥ 0
r1 · (L− |m|)+ r2 mod L, otherwise,

=
{

r1 · |m| + r2, if m ≥ 0
L− r1 · |m| + r2, otherwise.

Since the bit length of r1 · m is k2 − 1 will not exceed
that of (L/2), we can easily deduce that D(c̃) < (L/2)

when m ≥ 0, or D(c̃) > (L/2) otherwise. Then, CS1
can obtain c̃′ = E(1) if m > 0, and c̃′ = E(0) otherwise.

2) When the Random Bit b = 0: Similarly, we can deduce
that when b = 0, CS1 can obtain c̃′ = E(0) if m > 0,
and c̃′ = E(1) otherwise.

Based on the results of these two cases, we can draw the
truth table of D(c′) = D(E(sign(m))) in Table II. From the
table, the correctness of the privacy-preserving sign calculating
protocol follows.

TABLE II
TRUTH TABLE OF D(c′) = D(E(sign(m)))

D. Bloom Filter

A Bloom filter is a data structure used for answering approx-
imate membership queries. That is, given a Bloom filter built
from a set S [denoted by BF(S)], one can determine whether
an element si ∈ S or not with a bounded false-positive rate.
In specific, a Bloom filter consists of a vector of � bits, i.e.,
{bi}�i=1, and f hash functions {hi}fi=1, where each hash function
hi : {0, 1}∗ �→ {1, 2, . . . , �} maps an arbitrary input to a bit
in the vector. Then, given a set S , the corresponding Bloom
filter BF(S) is built by: 1) initializing each bit in the vector to
0 and 2) setting positions {hi(sj) | i = 1, 2, . . . , f, sj ∈ S} to 1.
After that, BF(S) determines whether s ∈ S or not by testing
whether all the corresponding locations {hi(s) | i = 1, 2, . . . , f}
are 1s or not. If any of these bits is 0, then s is definitely not a
member of S; otherwise, s ∈ S with a false-positive rate less
than (1− e−f·|S|/�)f, where e is Euler’s number.

IV. OUR PROPOSED SCHEME

In this section, we present our privacy-preserving cybertwin-
based spatiotemporal keyword query (CSKQ) scheme, which
consists of four parts, namely, system initialization, message
publishing, message indexing, and query conducting.

A. System Initialization

In the system initialization, given security parameters
{k0, k1, k2}, the service provider generates the secret keys
for all entities, and each vehicle initializes its own cyber-
twin. Specifically, the system initialization phase comprises
the following five steps.

Step 1: With the security parameters {k0, k1, k2}, the ser-
vice provider runs the key generation algorithm of
the SHE scheme to obtain {PP, SK}. After that, the
service provider further computes an SHE cipher-
text E(−1), together with two ciphertexts of zero,
i.e., E(0)1 and E(0)2.

Step 2: The service provider partitions the city map into
several nonoverlapped regions R, such that each
region Ri ∈ R roughly has the same rate of new
messages. Furthermore, the service provider selects
a hash function H(·) : {0, 1}∗ �→ {1, 2, . . . , |R|}
and a randomly generated key K1 for H(·).

Step 3: The service provider generates a secret key K2 for
a symmetric-key encryption (SE) scheme, e.g., the
advanced encryption standard (AES) scheme.

Step 4: The service provider publishes the public parame-
ter PP, the hash function H(·) and three ciphertexts
{E(−1), E(0)1, E(0)2}. Furthermore, the service
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provider securely sends {K1, K2} to the publishers
and vehicles, and sends SK to CS2.

Step 5: Upon receiving the secrets from the service
provider, each vehicle deploys its own cybertwin.
Specifically, it securely sends {K1, K2} to its
cybertwin and establishes a secure and reliable
connection to the cybertwin.

B. Message Publishing

After the initialization, the publishers can publish mes-
sages to the authorized vehicles through the cloud platform.
To protect the messages from the honest-but-curious cloud,
each message needs to be encrypted. Specifically, on a spe-
cific date dt (e.g., 20200201), a publisher publishes a message
mi = (ci, Li, Wi, dt, ti, t̂i) in the following three steps.

Step 1: The publisher encrypts mi’s content ci, location Li,
and expire time t̂i (e.g., 1620) with the secret key
K2, i.e., SE(K2, ci‖Li‖dt‖t̂i). Then, the publisher
maps Li to the corresponding region RLi ∈ R and
computes H(K1‖dt‖RLi).

Step 2: The publisher builds a Bloom filter BF(˜Wi), where
˜Wi = {w̃i = K1‖dt‖wi | wi ∈ Wi} is constructed
from mi’s keyword set Wi.

Step 3: The publisher further encrypts the expire time t̂i into
E(t̂i) by computing

E
(

t̂i
) = t̂i + r1 · E(0)1 + r2 · E(0)2 mod N (1)

where r1 and r2 ∈ {0, 1}k2 are random numbers.
Then, it uploads E(mi) = {SE(K2, ci‖Li‖dt‖t̂i),
H(K1‖dt‖RLi), BF(˜Wi), dt, ti, E(t̂i)} to CS1 via a
secure channel.

C. Message Indexing

To organize the encrypted message E(mi) for efficiently
supporting spatiotemporal keyword queries, CS1 maintains a
layered index, as shown in Fig. 4. In the index, based on the
messages’ released dates, they are first separated into groups,
and each group of messages is further organized in |R| seg-
ment forests. Specifically, CS1 creates a new group of segment
forests on each day. Then, upon receiving an encrypted mes-
sage E(mi), it indexes E(mi) in the current group by running
the following steps.

Step 1: CS1 locates the segment forest linked to mi’s hashed
location H(K1‖dt‖RLi), denoted by SFLi , and it
creates an empty one if SFLi does not exist.

Step 2: CS1 appends E(mi) into the segment forest SFLi

as a segment tree whose height is 1. After that, to
ensure that the resulting segment forest only con-
tains trees of different heights, CS1 adjusts the seg-
ment forest by recursively running the ADJUST(SF)
in Algorithm 1 with the help of CS2. The main idea
of the algorithm is to test whether the last two trees,
denoted as SF[−1] and SF[−2], in the forest are
of the same height. If the two trees have different
heights, then the heights of all trees in it are differ-
ent and the algorithm stops. Otherwise, if the two
trees have the same height, the algorithm builds a

Fig. 4. Data structure for indexing messages, in which the messages published
on the same date and in the same region will be organized in the same segment
forest.

parent node for them, in which the Bloom filter, the
release timestamp, and the expire time are respec-
tively computed at lines 17–22. After computing the
expire time of a new segment tree node, CS1 needs
to run Protocol 1 to obtain a refreshed ciphertext if
the height of the new parent node can be divided by
the multiplication depth σ . At the end of the algo-
rithm, it recursively adjusts the resulting segment
forest until all trees in the forest are of different
heights.

After running the above steps, messages are stored in the
cloud and ready to be queried by the authorized vehicles.

D. Query Conducting

After the initialization, the authorized vehicles can access
the messages published by the publishers. In specific, to
receive messages that are related to itself, a vehicle V contin-
uously synchronizes its location and keyword changes to its
cybertwin. Based on the history trajectories and preferences
of the vehicle and other contextual information, the cybertwin
predicts the future locations of the vehicle. However, as we
mainly focus on privacy preservation and the prediction will
be conducted by cybertwin over plaintext information, we omit
the details related to the prediction. Assume that the last time
for the cybertwin to query the service is at time told of the date
dt, for each predicted location (Lv,k, tk), it queries the cloud
in the following steps.

Step 1: The cybertwin maps the location Lv,k to the
corresponding region Rv,k ∈ R and computes
H(K1‖dt‖Rv,k).

Step 2: The cybertwin builds a Bloom filter BF(˜Wv), where
˜Wv = {w̃i = K1‖dt‖wj | wj ∈ Wv} is constructed
from the vehicle V’s keyword set Wv.

Step 3: The cybertwin encrypts tk as E(tk) by comput-
ing (1). Then, it submits E(Q) = (H(K1‖dt‖Rv,k),

told, E(tk), BF(˜Wv), dt) to CS1 through a
secure channel.

Step 4: On receiving the query token Q, CS1 first locates
the segment forest linked to H(K1‖dt‖Rv,k) in the
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Algorithm 1 Segment Forest Adjustment
Input: The original segment forest SFLi = [T1, T2, · · · , Ts].
Output: The updated segment forest SF∗Li

= [T ′1, T ′2, · · · , T ′s′ ]
1: return SF∗Li

=ADJUST(SFLi )

2: function ADJUST(SF)
3: // Compare the heights of the last two trees, denoted as SF [−1]
4: // and SF [−2], in the forest
5: if height(SF [−1]) �= height(SF [−2]) then
6: // Do nothing when the last two trees have different heights
7: return SF
8: else
9: // When the last two trees have the same height

10: right = SF .removeLast()

11: left = SF .removeLast()

12: // Build a new parent node for the two nodes
13: root = new Node()
14: root.left = left
15: root.right = right
16: // Computing BF(Wi), ti, t̂i for the parent node
17: root.keywords = OR(left.keywords, right.keywords)
18: if left.release > right.release then
19: root.release = left.release
20: else
21: root.release = right.release
22: root.expireTime = MAX(left.expireTime, right.expireTime)
23: // Append the resulting tree into SF
24: SF .append(root)
25: // Recursively check the resulting segment forest
26: return ADJUST(SF)

27: function OR(left, right)
28: ret = new Boolean[left.length]
29: for i = 0; i < ret.length; i++ do
30: // Compute OR operation for each bit
31: ret[i] = left[i] + right[i] − left[i] ∗ right[i]
32: return ret

33: function MAX(left, right)
34: // Invoke the privacy-preserving sign calculating protocol
35: b = sign(left - right)
36: // max(left, right) can be computed with the encrypted bit b
37: max = b ∗ left + (E(0) + b) ∗ right
38: return max

group of messages whose release date is dt, denoted
as SFv,k.

Step 5: CS1 runs Algorithm 2 with CS2 to obtain the query
result. The main idea is to query each segment
tree in SFv,k. For each segment tree, the algorithm
runs QUERYNODE() to obtain a list of leaf nodes
that satisfy the query request Q. Specifically, for
each node, it respectively checks: 1) whether the
latest release date of the messages in the node is
larger than told (line 7); 2) whether the node’s key-
word set contains the query keywords (line 11);
and 3) whether the latest expire date of these
messages is larger than tk (line 16). If either the
first two conditions fail, the node and its chil-
dren are pruned. Otherwise, CS1 further verifies
whether the third condition is satisfied by running
a modified sign calculating protocol, denoted by
pSign, to obtain D(f2) = pSign(f2+E(−1)), where
f2 = sign(E(t̂i) − E(tk)). Similar to Protocol 2,
pSign(x) = 1 if x ≥ 0, and pSign(x) = 0 other-
wise. The only difference between Protocol 2 and

Algorithm 2 Conducting Query
Input: The segment forest SFv,k , the query request Q.
Output: The query result Resp

1: Resp = {} // Init Resp as an empty list
2: for all tree in SFv,k do
3: Resp = Resp∪ QUERYNODE(tree.root)
4: return Resp

5: function QUERYNODE(node)
6: // Whether the node has been visited in previous queries
7: if node.releaseDate < Q.told then
8: return ⊥ // Return an empty list
9:

10: // Whether the node’s Bloom filter of keywords satisfies BF(Wq)

11: f1 = VERIFYBF(node.keywords, Q.keywords)
12: if f1 < 0 then
13: return ⊥ // Return an empty list
14:
15: // Compare the node’s expire time and E(tk)
16: f2 = sign(node.expireTime − Q.E(tk))
17: f = pSign(f2 + E(−1))

18: if f == 0 then
19: return ⊥ // return an empty list
20: else if node is a leaf node then
21: // Return a singleton list containing the node’s encrypted message
22: return {node.E(m)}
23: else
24: // Recursively query the node’s children
25: l = QUERY(node.left)
26: r = QUERY(node.right)
27: return l ∪ r

28: // Verifies whether W2 ⊂ W1 or not
29: function VERIFYBF(BF(W1), BF(W2))
30: numOfOne = 0
31: numExpected = 0
32: for i = 0; i < len(BF(W1)); i++ do
33: numOfOne += BF(W1)[i] · BF(W2)[i]
34: numExpected += BF(W2)[i]
35: return numOfOne - numExpected

pSign is that, in step 2 of pSign, CS2 sends a plain-
text 1 or 0 instead of E(1) or E(0) to CS1. Then,
CS1 obtains D(f2) = 1 if b �= D(c̃); or D(f2) = 0,
otherwise. If the value of D(f2) = 1, the algorithm
recursively runs on the node’s children or returns
itself if it is a leaf node. Otherwise, the algorithm
returns an empty list. In a nutshell, through this pro-
cess, the algorithm first ignores the messages that
are published before told. Then, it queries the rest
part of the segment forest and prunes a specific node
if it does not satisfy the criteria. Thus, generally, it
will obtain a significantly improved performance.

Step 6: After running Algorithm 2, CS1 obtains a set of
messages Resp satisfying the query request Q.
Then, it sends Resp to the cybertwin.

Step 7: On receiving the query result, the cybertwin
decrypts the messages. Then, it feeds the obtained
messages to the driving assistance system and
pushes them to the vehicle when it arrives at the
corresponding location.

Correctness: The correctness of the privacy-preserving
CSKQ scheme holds iff all messages satisfy: 1) the spatial
criteria; 2) the keyword criteria; and 3) the temporal criteria
of a query that will be included in the corresponding Resp.
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Therefore, we show that a message will be excluded from
Resp if it does not satisfy at least one of the three types of
criteria as follows.
C-1: A message will be excluded from Resp if it does not

satisfy the spatial criteria of the corresponding query. A
message mi = (ci, Li, Wi, dt, ti, t̂i) is encrypted as

E(mi) =
(

SE
(

K2, ci
∥

∥Li
∥

∥dt
∥

∥t̂i
)

, H
(

K1
∥

∥dt
∥

∥RLi

)

BF
(

˜Wi
)

, dt, ti, E
(

t̂i
))

and uploaded to the cloud. Then, as detailed in
Section IV, the cloud puts E(mi) into a bucket
where all messages’ H(K1‖dt‖RLi) are the same.
While conducting an encrypted query E(Q) =
(H(K1‖dt‖Rv,k), told, E(tk), BF(˜Wv), dt), CS1 queries
the segment forest where each message mi in it satisfies
that H(K1‖dt‖RLi) = H(K1‖dt‖Rv,k). Since K1 and dt
are the same for valid messages and queries, the ranges
of the message and the query, i.e., Rv,k and RLi should
also be the same with a considerably high probability,
based on the property of H(·). Thus, a message will
be excluded from Resp if it does not satisfy the spatial
criteria of the query.

C-2: A message will be excluded from Resp if it does not
satisfy the keyword criteria of the corresponding query.
While encrypting a message mi, the corresponding pub-
lisher builds a Bloom filter BF(˜Wi) to represent mi’s
keywords Wi. Similarly, a query’s keywords set Wq is
also represented as BF(˜Wq) by the cybertwin. Then, as
demonstrated in VERIFYBF in Algorithm 2, the function
computes

f1 =
�

∑

i=1

(

BF
(

˜Wi
)

[i] · BF
(

˜Wq
)

[i]− BF
(

˜Wq
)

[i]
)

where � = len(BF(˜Wi)). The value f1 indicates whether
all positions of 1s in BF(˜Wq) are also 1s in BF(˜Wi), i.e.,
whether Wq ⊂ Wi. In specific, if the value f1 < 0, we
know Wq �⊂ Wi and the message mi does not satisfy the
query request. Otherwise, the value f1 = 0, and we know
mi satisfies the query request with a negligible false-
positive rate. Thus, a message will be excluded from
Resp if it does not satisfy the keyword criteria of the
corresponding query.

C-3: A message will be excluded from Resp if it does not
satisfy the temporal criteria of the corresponding query.
The release timestamp ti is directly sent to CS1 while
the expire time t̂i of a message mi is encrypted as E(t̂i).
Then, the cloud checks whether mi satisfies a query Q or
not by testing whether ti < told and t̂i < tv,k, respectively,
on lines 7 and 16 in Algorithm 2. Thus, a message will
be excluded from Resp if it does not satisfy the temporal
criteria of the corresponding query.

From the above analysis, the correctness of the proposed
privacy-preserving CSKQ scheme holds.

V. SECURITY ANALYSIS

In this section, we analyze the security of our proposed
scheme. Specifically, we first show that SHE ciphertexts

obtained through (1) have the same security as the original
SHE scheme [30]. Then, following our security model, we,
respectively, show that our proposed scheme can preserve the
privacy of the published messages and the query requests.

A. Security of SHE Ciphertexts Obtained Through (1)

We prove the SHE ciphertexts obtained through (1) are
IND-CPA secure upon the extended (L, p)-based decision
assumption. Before that, we first recall two subsets of ZN
defined in [30] as follows:
{

S = {αL+ βp mod N | α, β ∈ ZN , αL < p}
S = ZN \ S : {αL+ βp mod N | α, β ∈ ZN , αL ≥ p}

and introduce our extended (L, p)-based decision problem and
its assumption. Here, let us keep in mind that the bit lengths
|p| = k0 and |L| = k2.

Lemma 1: Given security parameters k0 and k2 satisfying
3k2 < k0 and two elements {ei}2i=1 in S, where each

ei = αiL+ βip mod N , with αi ∈ {0, 1}k2, βi ∈ ZN
a new value x← XGen(e1, e2), i.e.,

x = r1e1 + r2e2 mod N (2)

generated by (e1, e2) with two random numbers r1, r2 ∈
{0, 1}k2 is also a valid element of S.

Proof: By expanding (2), we have

x = (r1α1 + r2α2) · L+ (r1β1 + r2β2) · p mod N
= αxL+ βxp mod N

where βx = r1β1 + r2β2 mod N ∈ ZN , αx = (r1α1 + r2α2).
As the bit lengths of ri, αi, and L are both k2, the bit length
of αxL is 3k2 < k0, where k0 is the bit length of p. Hence,
we have αxL < p, and x ∈ S.

Definition 1 [Extended (L, p)-Based Decision Problem]:
Given (k0, k2,N , e1, e2), flipping a coin z ∈ {0, 1}. If z = 0,
generate x ∈ S ← XGen(e1, e2); if z = 1, randomly
draw x ∈ S. The extended (L, p)-based decision problem
is to determine whether x ∈ S or not for a given tuple
(k0, k2,N , e1, e2, x), i.e., to determine the value of z without
knowing (p, q,L, r1, r2).

Here, we demonstrate the intractability of the
extended (L, p)-based decision problem. Without know-
ing (p, q,L, r1, r2), as analyzed in [30], the distinguisher B
can obtain {p, q,L} only by exhausting spaces of p and L, i.e.,
{0, 1}k0 and {0, 1}k2 . Then, except {p, q,L}, the distinguisher
B can solve the problem only by searching the values of the
two random numbers r1 and r2. Specifically, given a problem
instance (k0, k2,N , e1, e2, x), B first exhausts r1 ∈ {0, 1}k2 ,
and for each r1, it verifies whether

r2 = (x− r1 · e1) · e−1
2 mod N ?∈ {0, 1}k2 .

If the resulting r2 ∈ {0, 1}k2 , the corresponding pair of (r1, r2)

is a correct guess, and B knows x ∈ S. Therefore, we need
to choose proper parameters {k0, k2} to ensure the extended
(L, p)-based decision problem is intractable.

Definition 2 [Extended (L, p)-Based Decision
Assumption]: The Extended (L, p)-Based Decision Problem
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is hard if, for any polynomial time algorithm, its advantage
in solving the problem is a negligible function in k0 and k2.

Theorem 1: A SHE ciphertext obtained through (1) is
IND-CPA secure under the extended (L, p)-based decision
assumption.

Proof: Assume that there exists a probabilistic poly-
nomial time (PPT) adversary A that has a non-negligible
advantage ε to break the IND-CPA security of the ciphertexts
obtained through (1). Then, we can construct a distinguisher
B that exploits A’s ability to break the extended (L, p)-
based decision problem with another nonnegligible advantage.
Specifically, B and A interact as follows.

1) With an extended (L, p)-based decision problem
instance (k0, k2, N , e1, e2, x), B chooses k1 such
that k1 
 k2 and sets the message space M =
[−2k1−1, 2k1−1). Then, B sends (k0, k1, k2,N , E(0)1 =
e1, E(0)2 = e2) to A.

2) Upon receiving (k0, k1, k2,N , E(0)1, E(0)2), A chooses
two messages m0, m1 ∈ M and sends them to B. On
receiving {m0, m1}, B randomly chooses a bit b ∈ {0, 1},
computes c = mb+x mod N , and sends c as a ciphertext
to A.

3) On receiving c, A outputs a bit b′ ∈ {0, 1} as its guess
on b. Then, B outputs z′ = 0 as its guess on z if b′ = b,
and z′ = 1 otherwise.

Obliviously, when z = 0, i.e., x ∈ S, the ciphertext
c = m + αL + βp mod N is a valid ciphertext. Thereby, A
can exert its advantage and correctly guess b with probabil-
ity Pr [b′ = b | z = 0] = (1/2) + ε, so Pr [B success | z =
0] = (1/2)+ ε. On the other hand, when z = 1, the ciphertext
c is not a valid ciphertext, and A can only randomly make
its guess. Thus, we have Pr [B success | z = 1] = Pr [b′ =
b | z = 1] = (1/2). Summarizing the above two cases, we
have Pr [B success] = (1/2)× ([1/2]+ ε)+ (1/2)× (1/2) =
(1/2)+ (ε/2). Since ε is nonnegligible, the above result con-
tradicts with the extended (L, p)-based decision assumption.
Thus, the ciphertext obtained through (1) is IND-CPA secure
under the extended (L, p)-based decision assumption.

B. Security of the Proposed Scheme

Published Messages Are Privacy Preserving: As detailed
in Section IV, a message mi is encrypted into E(mi) =
(SE(K2, ci‖Li‖dt‖t̂i), H(K1‖dt‖RLi), BF(˜Wi), dt, ti, E(t̂i)) by
the corresponding publisher. Then, the message is uploaded to
CS1, and the latter inserts E(mi) into the index with the help
of CS2. Since CS1 and CS2 are honest-but-curious and non-
collusive, we, respectively, show that the encrypted message
is secure against them as follows.
For CS1: After system initialization, CS1 has access to PP

and {E(−1), E(0)1, E(0)2}. On the one hand, since
CS1 does not know the secret keys K1 and K2, it
can neither recover RLi from H(K1‖dt‖RLi), enu-
merate all possible combinations of keywords, nor
decrypt SE(K2, ci‖Li‖dt‖t̂i). Furthermore, as each
element in BF(˜Wi) contains dt, without knowing
K1, one cannot link the keyword Bloom filters
BF(˜Wi) on different dates dt even they are built

from the same set of keywords. Similarly, the
hashed regions H(K1‖dt‖RLi) generated for differ-
ent dates dt cannot be linked, which makes it harder
for CS1 to infer the location of the encrypted mes-
sage. On the other hand, following (1), the SHE
ciphertext E(t̂i) is encrypted and processed with
{E(−1), E(0)1, E(0)2}, which is also obtained by
CS1. However, based on the security of the original
SHE scheme and Theorem 1, CS1 cannot obtain the
corresponding plaintext. Furthermore, while index-
ing the message E(mi), CS1 runs Algorithm 1 with
the help of CS2. Nevertheless, during running the
algorithm, CS1 can only receive the encrypted max-
imum E(max(left.t̂, right.t̂)), but it cannot know the
corresponding plaintext. Thus, the plaintexts, loca-
tions, and keywords of the published messages are
privacy preserving against CS1.

For CS2: Although CS2 holds SK, it cannot directly access
the encrypted messages. That is, CS2 can only
receive a ciphertext c̃ = E(r1 · m + r2) dur-
ing each invocation of the privacy-preserving sign
calculating protocol, but it cannot recover the plain-
text m without knowing r1 and r2. Thus, the
encrypted messages are privacy-preserving against
CS2. Therefore, the plaintexts, locations, and key-
words published messages are privacy-preserving
under our considered model.

Query Requests Are Privacy Preserving: While launching
a query Q = {Lq, tq, t̂q, Wq, dt}, a cybertwin encrypts it to
be E(Q) = {H(K1‖dt‖Lq), tq, E(t̂q), BF(˜Wq), dt}. Then, CS1
receives E(Q) and conducts the query with the help of CS2.
Hence, we show the query requests are privacy-preserving
against the two honest-but-curious cloud servers {CS1, CS2}.
For CS1: On the one hand, similar to the encrypted mes-

sages, without knowing K1 and SK, CS1 cannot
recover the plaintexts of H(K1‖dt‖Lq), BF(˜Wq)

or E(t̂q) in the encrypted query request E(Q).
Furthermore, CS1 cannot link them on different
release dates dt to infer the location of the query.
On the other hand, during conducting the query,
CS1 runs Algorithm 2 with the help of CS2, and
it receives several plaintexts as comparison results.
Specifically, in each invocation of the QUERYN-
ODE function, CS1 receives one plaintext from
CS2. However, the plaintext only reveals whether
the node satisfies the expire time requirement or
not. Therefore, the honest-but-curious CS1 can-
not obtain the location and keywords of the query
request.

For CS2: Before query conducting, since the query request is
uploaded to CS1, CS2 cannot receive the ciphertexts
or plaintexts of the query request. While helping
CS1 to conduct the query, CS2 receives several SHE
ciphertexts through the pSign protocol. Although
CS2 can decrypt them with SK, each of the obtained
plaintexts contains two random numbers r1 and
r2. Without knowing these two random numbers,
CS2 cannot obtain the actual plaintext, which is
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Fig. 5. Sorted frequency distribution of the keywords extracted from the
data set. Based on their frequencies, we roughly group the keywords into
three categories, namely, A, B, and C.

the intermediate information related to the query.
Thereby, CS2 cannot obtain the plaintext of the
query request. Thus, the locations and keywords
of query requests are privacy preserving under our
considered model.

From the above analysis, we can see the proposed spa-
tiotemporal keyword query scheme can indeed preserve the
privacy of the published messages and the query requests.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
privacy-preserving spatiotemporal keyword query scheme. To
this end, we implemented our scheme in Java. In the imple-
mentation, we set the security parameters k0 = 2048, k1 = 32,
and k2 = 160 and we choose AES as the underlying SE
scheme. In the implementation, we use the Bloom filter
provided by Google Guava,1 and the number of expected
insertions and the false-positive probability are respectively
set to 200 and 0.01. Then, we conduct several experiments
on an Intel Core i5-1038NG7 CPU @2.00GHz, 16-GB RAM
and macOS 11.2 operating system over a data set extracted
from a dump file of Wikipedia [31]. Specifically, we first
extract 14 464 documents from a wikidump file and exclude
the documents whose length is smaller than 500. After that,
we respectively extract the location and keywords of each doc-
ument with the help of spaCy [32], where the keywords are
the most frequently appeared nouns, proper nouns, or adjec-
tives. As shown in Fig. 5, we partition the keywords into
three categories based on the number of documents includ-
ing them. Then, we demonstrate the performance of our
proposed scheme in message publishing and query conducting
as follows.

A. Message Publishing and Indexing

As detailed in Section IV-B, to publish a message mi, CS1
runs one round of SE and one round of SHE encryption through
(1). Therefore, the computational complexity for a publisher
to encrypt a message is O(1). According to our experiment,

1https://guava.dev

Fig. 6. Time consumption for the cloud to index one message versus different
numbers of messages in the corresponding segment forest.

it only takes averagely 153.37 μs for a publisher to encrypt a
message. Then, the publisher uploads the encrypted message
to CS1, and the latter indexes the message by integrating it into
the corresponding segment forest through Algorithm 1. We can
easily see that CS1 and CS2 need to jointly create multiple parent
nodes with a relatively low probability. Specifically, to insert an
encrypted message into the index, the two cloud servers jointly
create no more than two nodes on average. In Fig. 6, we plot the
time consumption for the cloud to add messages into the index
and an orange line indicating the moving average of the time
consumption with the sliding window length of 20. As shown
in the figure, although a small portion of insertions take less
than 10 ms to complete, the moving average time consumption
is less than 1 ms. Thus, message publishing and indexing in
our proposed scheme is efficient for both the publishers and
the cloud.

B. Query Conducting

To launch a spatiotemporal keyword query Q, a cybertwin
first encrypts it as E(Q) by computing (1) to conduct one
SHE encryption. According to our experiment, it only takes
57.30 μs for a cybertwin to encrypt a query request. Then, CS1
and CS2 together run Algorithm 2, and the computational cost
is affected by the number of nodes visited by the algorithm.
According to our experiment, the average time consumption
for verifying a node is 111.41 μs, and the number of visited
nodes will be affected by the number of nodes in the bucket
that satisfying the query request. Then, we draw Figs. 7 and 8
to further demonstrate the relationship between the average
time consumption and several parameters related to the bucket
and queries.

In Fig. 7, we plot the relationship between the number of
messages in the bucket n, the popularity of query keywords,
the cybertwin’s last query time told, and the average time con-
sumption for query conducting. Specifically, to demonstrate
the effect of the popularity of query keywords on query time
consumption, we construct queries where each query con-
tains one keyword from one of the three categories in Fig. 5.
Furthermore, to demonstrate the effect of told on different sizes
of buckets, we convert told to be (told/n), i.e., the percentage
of messages excluded by their release time t. As shown in the
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Fig. 7. Average time consumption for the cloud conduct a query that contains
a keyword from one of the three categories over a bucket with n = 2000 and
4000 with varied (told/n), i.e., the percentage of messages excluded by their
release times.

Fig. 8. Average time consumption for the cloud conduct a query with one
keyword from category A over a bucket of 4000 messages with varied valid
periods, i.e., t̂i − ti of each message mi.

figure, the average time consumption for the cloud servers to
conduct a query increases with n, i.e., the number of messages
in the bucket. Furthermore, it reduces as the frequency of the
selected keywords reducing and (told/n) increasing.

In Fig. 8, we plot the relationship between messages’ valid
period and the average time consumption for the cloud to con-
duct a query. Specifically, the bucket contains 4000 messages,
where the valid period of each message mi, i.e., t̂i− ti, ranges
from 32 to 4000 minutes. The query’s told ranges from 800
to 3200, and it contains a random keyword from category of
keywords with highest frequency of appearance in the data
set, i.e., category A in Fig. 5. Furthermore, the query time tq
is set to 4000. As shown in the figure, the average time con-
sumption for the cloud servers to conduct a query increases
with the valid period. This is mainly because that, as the valid
period increases, the number of valid messages may increase.
However, since a larger amount of messages will be excluded
as told increases, the time consumption will not keep increasing
when told is greater than t̂i − ti.

VII. RELATED WORK

In this section, we review some related works, which are
closely related to our proposed scheme in terms of privacy-
preserving spatiotemporal range queries on outsourced data
sets and privacy-preserving keyword queries on dynamic
data sets.

Many schemes were proposed to support privacy-preserving
spatial or spatio-textual queries over an outsourced data set.
On the one hand, many schemes were proposed to support
privacy-preserving multidimensional or spatial range queries
and kNN queries. Focusing on privacy-preserving spatial kNN
queries, Wong et al. [9] proposed the asymmetric scalar-
product preserving encryption scheme (ASPE) and employed
it to achieve distance calculation, but its security is not
that strong. By presenting a hierarchical index named ̂R-tree
encrypted by ASPE, Wang and Ravishankar [10] proposed a
scheme to achieve privacy-preserving multidimensional range
queries. To obtain better security, Chi et al. [11] presented
an enhanced ASPE scheme and built a privacy-preserving
multidimensional range query scheme by securely detecting
rectangle intersection. Cui et al. [12] further improved the
security by building the scheme upon the Paillier public-key
encryption scheme. Then, Elmehdwi et al. [13] built a Paillier-
based secure kNN query scheme by designing several secure
protocols. This scheme can well preserve the data privacy
of the data set and the query but introduces heavy computa-
tional costs. To achieve better efficiency, Boldyera et al. [14]
and Choi et al. [15], respectively, proposed order-preserving
encryption (OPE) and mutable order-preserving encoding
(mOPE) to efficiently support secure multidimensional kNN
queries, but they do not protect the order relationship of
records and may invoke privacy concerns. On the other hand,
there are also many schemes focus on privacy-preserving
spatio-textual queries. Su et al. [16] built a privacy-preserving
top-k spatial keyword query scheme based on an IR-Tree
index. Later, they improved their work in [17] to achieve
better query performance. Cui et al. [18] proposed a privacy-
preserving scheme to support boolean spatio-textual queries
based on an R-tree index. Negi et al. [19] proposed a privacy-
preserving top-k spatio-textual query scheme for smart city
scenarios, and a quad-tree-based index is employed to index
the data set. However, these schemes [9]–[19] can only support
static data sets and cannot handle queries containing all spa-
tial, temporal, and textual criteria. Therefore, these schemes
are not applicable in our scenario.

There are also some schemes proposed for achieving textual
queries over dynamic data sets. Kamara et al. [20] proposed
a dynamic searchable symmetric encryption (DSSE) scheme,
but it can only support single-keyword queries. They fur-
ther improved query efficiency through parallelism in [21].
Naveed et al. [22] designed a primitive named blind stor-
age to support light-weight single keyword queries over a
dynamic data set. Kim et al. [23] constructed an efficient
forward secure DSSE scheme for single-keyword queries
by employing a dual-dictionary index. These schemes only
support single-keyword queries and are not applicable in
our scenario. Furthermore, some schemes focus on privacy-
preserving multikeyword queries over dynamic data sets.
Xia et al. [24] proposed a privacy-preserving multikeyword
rank query scheme where all records are organized a keyword
balanced binary tree. Du et al. [25] designed a privacy-
preserving multikeyword query scheme with both symmetric
and public-key constructions. Zheng et al. [26] proposed a
privacy-preserving conjunctive keyword query scheme that
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naturally supports queries over dynamic data. However, some
of them were built upon the symmetric encryption scheme
and do not support multiple publishers. Some of them can
support multiple publishers but still cannot efficiently handle
spatial and temporal criteria. Therefore, they cannot apply our
scenario.

As discussed above, many schemes proposed to address
queries containing spatial, textual, or spatio-textual crite-
ria, and some of them support queries over dynamic data
sets. However, none of them can simultaneously support
queries containing both spatial, temporal, and keyword criteria.
Therefore, they are not applicable in our scenario.

VIII. CONCLUSION

In this article, we have presented a privacy-preserving
cybertwin-based spatiotemporal keyword query for the ITS
scenario. Specifically, we first designed a layered index to
dynamically organize messages containing all spatial, tempo-
ral, and keyword information, and the index can efficiently
support queries over these messages. Then, we presented two
algorithms for, respectively, encrypting the index and queries
into ciphertexts of the SHE scheme without knowing the
secret key. After that, we presented our privacy-preserving
cybertwin-based spatiotemporal keyword query for the ITS
scenario, which can conduct encrypted queries over the
encrypted index. Meanwhile, security analysis demonstrated
that our scheme can preserve the privacy of the messages and
the queries. In addition, performance evaluation showed that
our scheme is indeed computationally efficient. In our future
work, we will further evaluate the efficiency of our scheme in
real-world application scenarios.
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