
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 69, NO. 4, APRIL 2020 4439

Poisoning and Evasion Attacks Against Deep
Learning Algorithms in Autonomous Vehicles

Wenbo Jiang , Student Member, IEEE, Hongwei Li , Senior Member, IEEE, Sen Liu, Student Member, IEEE,
Xizhao Luo, and Rongxing Lu , Senior Member, IEEE

Abstract—With the ongoing development and improvement of
deep learning technology, autonomous vehicles (AVs) have made
tremendous progress in recent years. Despite its great potential, AV
supported by deep learning technology still faces numerous security
threats, which prevent AV from being putting into large-scale prac-
tice. Aiming at this challenging situation, in this paper, we would
like to exploit two attacks against deep learning algorithms in traffic
sign recognition system by leveraging particle swarm optimization.
Specifically, we first exploit the PAPSO (poisoning attack with
particle swarm optimization) which focuses on the training process
of the deep learning algorithms in the traffic sign recognition
system, i.e., the attacker injects crafted samples into the training
dataset, causing a reduction in classification accuracy of the traffic
sign recognition system. Then, we also explore the EAPSO (evasion
attack with particle swarm optimization) which on the other hand
focuses on the interference process of the deep learning algorithms,
i.e., the attacker adds some hardly perceptible perturbations to the
targeted test sample, leading to a misclassification on it. Extensive
experiments are conducted to shed light on the effectiveness of
our attacks, and some corresponding defense strategies are also
presented.

Index Terms—Autonomous vehicles, traffic sign recognition,
deep learning, evasion attack, poisoning attack.

I. INTRODUCTION

THE pioneer study on autonomous vehicles was done by
CMU Navlab Group in 1984. Since then, considerable

attention [1]–[10] has been paid to the field and it has become an
important research trend of vehicular technology. As deep learn-
ing technology continues to evolve and improve, autonomous

Manuscript received January 8, 2020; revised February 20, 2020; accepted
February 22, 2020. Date of publication March 2, 2020; date of current version
April 16, 2020. This work was supported in part by the National Key R&D
Program of China under Grants 2017YFB0802300 and 2017YFB0802000,
in part by the National Natural Science Foundation of China under Grants
61972454, 61802051, 61772121, 61728102, and 61472065, in part by the Peng
Cheng Laboratory Project of Guangdong Province under Grant PCL2018KP004,
and in part by the Guangxi Key Laboratory of Cryptography and Information
Security under Grant GCIS201804. The review of this article was coordinated
by Dr. Z. Ma. (Corresponding author: Hongwei Li.)

Wenbo Jiang and Sen Liu are with the School of Computer Science and En-
gineering, University of Electronic Science and Technology of China, Chengdu
611731, China (e-mail: 364730959@163.com; 893551724@qq.com).

Hongwei Li is with the School of Computer Science and Engineering, Univer-
sity of Electronic Science and Technology of China, Chengdu 611731, China,
and also with the Peng Cheng Laboratory, Shenzhen 518000, China (e-mail:
hongweili@uestc.edu.cn).

Xizhao Luo is with the School of Computer Science and Technology, Soochow
University, Suzhou 215006, China (e-mail: xzluo@suda.edu.cn).

Rongxing Lu is with the Faculty of Computer Science, University of New
Brunswick, Fredericton, NB E3B 5A3, Canada (e-mail: rlu1@unb.ca).

Digital Object Identifier 10.1109/TVT.2020.2977378

Fig. 1. Three attack surfaces of autonomous vehicle.

vehicles have gained impressive advances. For instance, in 2010,
Google developed an autonomous car that could change or main-
tain lanes. GM developed the EN-V series of smart cars, which
used the Internet of Vehicles technology to achieve automatic
driving and parking; in 2017, Tesla launched the Autopilot 8.1
system, which greatly enhanced the performance of autonomous
cars.

Despite these dramatic improvements, there is a growing
recognition that autonomous vehicles expose numerous new
vulnerabilities. The threats surrounding autonomous vehicles
can be mainly divided into three types as illustrated in Fig. 1.
For instance, Zeng et al. proposed an attack against the GPS [11],
in which they proved that the navigation system will navigate
the car to a wrong direction by shifting the GPS location slightly.
Petit et al. [12] confirmed in their work that the MobilEye
C2-270 could be confused by utilizing a laser light or LED
matrix and Yan et al. [13] demonstrated that Tesla Model S
automobile’s cameras were vulnerable to the same attack; Key-
less entry system is threatened by jamming attacks [14], replay
attacks and relay attacks [15]; and the protocols used in the
autonomous vehicle also contain many security flaws [16].

Nevertheless, little attention has been paid to the safety of
deep learning algorithms in autonomous driving. In fact, au-
tonomous vehicles heavily rely on deep learning algorithms to
recognize objects and control the vehicle. For example, traffic
sign recognition is an important application of deep learning in
autonomous vehicles. It employs deep learning algorithms to
classify the traffic sign image captured by the camera device
and uses the intelligent control system to control the vehicle
according to the classification results. However, deep learning
is vulnerable to many malicious attacks [17]–[33]. Poisoning
attack is performed during the training process of deep learning,

0018-9545 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 18:07:33 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4592-8094
https://orcid.org/0000-0002-1961-7946
https://orcid.org/0000-0001-5720-0941
mailto:364730959@163.com
mailto:893551724@qq.com
mailto:hongweili@uestc.edu.cn
mailto:xzluo@suda.edu.cn
mailto:rlu1@unb.ca

4440 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 69, NO. 4, APRIL 2020

in which the attacker injects malicious samples to the training
dataset, leading to a reduction in prediction accuracy of the
learned model. For example, handwritten digit recognition [17],
PDF malware detection [21] and recommendation systems [24]
may be misled via some carefully forged malicious samples. On
the other hand, evasion attack focuses on the predicting process
of deep learning, in which the attacker generates an adversarial
example and the classifier may make a wrong classification on
it. For example, a misclassification may be made through adding
imperceptible or hardly perceptible perturbations to the normal
traffic sign image [30]. A spam may be classified as a normal
e-mail by adding several positive words into the spam [31].

In this paper, we first exploit the PAPSO (poisoning attack
with particle swarm optimization) and the EAPSO (evasion
attack with particle swarm optimization) against deep learning
algorithms. After that, we perform the PAPSO and the EAPSO
on traffic sign recognition system to demonstrate the effec-
tiveness of our attacks. Finally, we summarize some defense
strategies against the two attacks. Specifically, our contributions
of this paper can be elaborated in the following four aspects:
� First, we exploit the PAPSO, which degrades the perfor-

mance of the learned model by injecting crafted samples
into the training dataset, and we employ the particle swarm
optimization to optimize the poisoned sample to gain better
attack effects.

� Second, we explore the EAPSO, which attacks the interfer-
ence process of the deep learning model by adding some
hardly perceptible perturbations to a normal sample and
causing a misclassification of it, and we utilize the particle
swarm optimization to optimize the adversarial sample to
improve the effect of attack.

� Third, we are the first to consider both poisoning attack and
evasion attack against deep learning algorithms in traffic
sign recognition system. Our two attacks are universally
applicable to all deep learning algorithms or machine learn-
ing algorithms and they can be implemented through the
similar attack methodology. Because these two attacks are
both black-box attacks, they are more valuable in practice.

� Finally, we perform an extensive experimental evaluation
on our attacks. Concretely, we first analyze the impact of
hyper-parameters on attack effects and then evaluate the
performance of the learned model in the case of multiple
poisoned samples. Experimental results suggest that only
10% poisoned samples are enough to decrease classifica-
tion accuracy of the learned model to about 33%; the prob-
ability that the targeted test sample is classified correctly
can be reduced to about 22% by adding a perturbation of
12.5% of the feature value.

The remainder of this paper is organized as follows. We start
by describing the details of the threat model in Section II. Then,
we present the attack methodology in Section III. After that, we
explain on how to implement our attacks in autonomous vehicles
in Section IV. Experimental analysis is carried out in Section V,
followed by related work and defense strategies in Section VII
and Section VI, respectively. Finally, we draw some conclusions
in Section VIII.

II. THREAT MODEL

To make a deeper investigation on the attack methodology
of attackers, it is crucial for us to know the knowledge and
the capability of the attacker. Thus, in this section, we use the
threat model to describe the characteristics of the attacker, which
mainly consists of the following aspects.

A. Attacker’s Goal

Attacker’s goal can be defined from the following three dif-
ferent perspectives:
� Security violation: This characteristic defines the desired

security violation of the attacker and can be mainly divided
into three categories: integrity violation, the attacker has an
arbitrary objective such as causing a specific misclassifica-
tion on the targeted test sample; availability violation, the
attacker’s goal is to make the functionality of the learning
model unavailable by decreasing the classification accu-
racy; privacy violation, the attacker’s goal is to compromise
private information about the system.

� Attack specificity: According to attack specificity, at-
tacker’s goal can be divided into two categories: tar-
geted attack, the attacker’s goal is to cause a misclas-
sification of the targeted sample; indiscriminate attack,
the attack’s goal is to cause a misclassification of any
sample.

� Error specificity: According to error specificity, attacker’s
goal falls into two categories: specific attack, the attacker’s
goal is to make the classifier classify the targeted sample to
a specific wrong class; generic attack, the attacker’s goal
is to make the classifier classify the targeted sample as any
other class.

In this work, we consider two kinds of attacker’s goals: the
attacker who carries out poisoning attack focuses on decreasing
the classification accuracy of the learned model; and the attacker
who implements evasion attack aims at increasing the probabil-
ity that the targeted test sample is misclassified.

B. Attacker’s Knowledge

Attacker’s knowledge of the targeted model can be mainly
categorized into three levels:
� Perfect-Knowledge: it is also referred to as white-box

attack, which means everything about the targeted model
is known to the adversary. Although this scenario may be
impractical in the real world, it provides an opportunity to
evaluate the machine learning systems in a worst-case.

� Limited-Knowledge: it is also referred to as gray-box at-
tack, which means the adversary knows some components
of the targeted model, but not completely.

� Zero-Knowledge: it is also referred to as black-box at-
tack, which means the adversary knows nothing about the
learning model.

In this work, we assume the attacker has zero-knowledge of
the targeted model, but he has the capability of using the model
and knowing the test accuracy of the targeted model.

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 18:07:33 UTC from IEEE Xplore. Restrictions apply.

JIANG et al.: POISONING AND EVASION ATTACKS AGAINST DEEP LEARNING ALGORITHMS IN AUTONOMOUS VEHICLES 4441

Fig. 2. Different processes targeted by poisoning attack and evasion attack.

TABLE I
NOTATIONS AND DESCRIPTION

C. Attacker’s Capability

Attacker’s capability means the ability of an attacker to control
the training dataset or test sample. In this work, we assume that
the attacker who carries out the poisoning attack has the ability
of injecting corrupted samples into the training dataset and the
attacker who implements evasion attack has the ability of adding
perturbations to the targeted test sample.

III. ATTACK METHODOLOGY

In this section, we present our attack methodology. First,
we begin by presenting a brief introduction to particle swarm
optimization. After that, we propose the PAPSO (poisoning
attack with particle swarm optimization) and the EAPSO (eva-
sion attack with particle swarm optimization), respectively. The
different processes targeted by poisoning attack and evasion
attack are shown in Fig. 2. Also, the notations and symbols used
in this work are listed in Table I.

A. PSO: Particle Swarm Optimization

Particle swarm optimization algorithm was originally pre-
sented by Eberhart and Kennedy in 1995 [34], whose idea was
derived from birds’ group foraging behavior. Specifically, in
the PSO, the first step of the PSO is to generate numerous
particles, which are randomly distributed in the solution space.
Each particle is a possible solution in the solution space and has
two properties: velocity vivivi and position pipipi. The best position
that the particle has experienced is denoted by pbest and the
best position that the whole group have experienced is denoted
by gbest. In practice, the goodness of the particles is evaluated by
the fitness value determined by the optimization problem. Each
particle adjusts its velocity and updates its position based on
pbest and gbest, thereby generating a new generation of groups.
Through information sharing among particles in the whole group
and constantly update, the optimal solution can be found after
several rounds of iterations.

Suppose that the optimization process is processed in N -
dimensional space, the position of the ith particle can be repre-
sented as:

pipipi = (pi1, pi2, . . ., piN)T (1)

the velocity of the ith particle can be expressed as:

vivivi = (vi1, vi2, . . ., viN)T (2)

The update process of the ith particle is presented in Eq. (3)
and Eq. (4):

vk+1
id = αvkid + c1r

k
1 (pbest

k
id − pkid) + c2r

k
2 (gbest

k
d − pkid)

(3)

pk+1
id = pkid + vk+1

id (4)

where vkid represents the velocity of the dth-dimension of the
ith particle in the kth iteration. pkid is the current position of the
dth-dimension of the ith particle in the kth iteration. pbestkid
is the best position of the ith particle has experienced in the
dth-dimension and the kth iteration. gbestkd is the best position
of the whole group has experienced in the dth-dimension and
the kth iteration. α is a non-negative number, called the inertia
weight, which reflects the impact of the past movement state
of the particle on its current behavior. r1, r2 are two random
numbers in (0,1). c1, c2 are acceleration factors. Note that, in
this work, c1, c2 are both set to 2 and α is set to 0.8.

B. PAPSO: Poisoning Attack With Particle
Swarm Optimization

Regarding PAPSO, the adversary’s goal is to decrease the
classification accuracy of the learned model through injecting
poisoned data to the training dataset. In order to evade the outlier
detection, the poisoned sample must be as stealthy as possible.
Thus, our strategy is to add imperceptible or hardly perceptible
perturbations to the normal sample and keep its label unchanged.
Our initialization approach is to choose a normal sample and
initialize random perturbations. The initialization algorithm of
the PAPSO will be presented in Algorithm 1.

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 18:07:33 UTC from IEEE Xplore. Restrictions apply.

4442 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 69, NO. 4, APRIL 2020

Algorithm 1: Initialization of the PAPSO.
Input: M1 is the number of particles in the swarm; a
normal sample (xnxnxn, yn)

1: for each particle i = 1, . . .,M1 do
2: Initialize the particle’s position pipipi
3: Initialize the particle’s velocity vivivi
4: Initialize pbest: p∗ip

∗
ip
∗
i ← pipipi

5: end for
6: Initialize gbest: Choose acc(pmaxpmaxpmax) from acc(p1p1p1) to

acc(pM1
pM1pM1) where acc(pmaxpmaxpmax) is the maximum value.

7: pgbpgbpgb ← pmaxpmaxpmax

Algorithm 2: Poisoning Attack With Particle Swarm
Optimization.

Input: acceleration factors c1, c2; random numbers r1,
r2; inertia weight α; T1 is the number of iteration; M1 is
the number of particles in the swarm; a normal sample
(xnxnxn, yn)

Output: one optimal poisoned sample (xpxpxp, yn)
1: p1, p2, . . ., pM1 = initialization of the

PAPSO(M1, (xnxnxn, yn))
2: for t = 1 to T1 (iteration counter) do
3: for each particle i = 1, . . .,M1 do
4: vivivi ← αvivivi + c1r1(p

∗
ip
∗
ip
∗
i − pipipi) + c2r2(pgbpgbpgb − pipipi)

5: pipipi ← pipipi + vivivi
6: if acc(pipipi) > acc(p∗ip

∗
ip
∗
i) then

7: p∗ip
∗
ip
∗
i ← pipipi

8: end if
9: if acc(pipipi) > acc(pgbpgbpgb) then

10: pgbpgbpgb ← pipipi
11: end if
12: end for
13: end for
14: (xpxpxp, yn)← (pgbpgbpgb + xnxnxn, yn)
15: return (xpxpxp, yn)

pipipi (i = 1, . . .,M1) means different perturbations which will
be added to the normal sample (xnxnxn, yn). acc(pipipi) represents the
classification accuracy of the learned model under Dtr ∪ (xnxnxn +
pipipi, yn), where (xnxnxn + pipipi, yn) is the poisoned sample which is
combined by the normal sample (xnxnxn, yn) and pipipi. The pbest of
pipipi is denoted by p∗ip

∗
ip
∗
i and the gbest is denoted by pgbpgbpgb.

Before delving into the details of the PAPSO, some assump-
tions are made: the position of each particle is limited to the
allowable range during the update process; we generate and op-
timize one poisoned sample at a time; As for multiple poisoned
samples, we inject one poisoned sample to the training dataset
and carry out the PAPSO to obtain another poisoned sample,
these processes will be executed repeatedly. Poisoning attack
with the PSO will be described in Algorithm 2.

C. EAPSO: Evasion Attack With Particle Swarm Optimization

As for EAPSO, the adversary’s goal is to decrease the prob-
ability that the targeted test sample is classified correctly by
adding some hardly perceptible perturbations to the targeted

Algorithm 3: Initialization of the EAPSO.
Input: M2 is the number of particles in the swarm; the
targeted test sample (xtxtxt, yt)

1: for each particle j = 1, . . .,M2 do
2: Initialize the particle’s position pjpjpj
3: Initialize the particle’s velocity vjvjvj
4: Initialize pbest: p∗jp

∗
jp
∗
j ← pjpjpj

5: end for
6: Initialize gbest: Choose pro(pminpminpmin) from pro(p1p1p1) to

pro(pM2
pM2pM2) where pro(pminpminpmin) is the minimum value.

7: pgbpgbpgb ← pminpminpmin

Algorithm 4: Evasion Attack With Particle Swarm
Optimization.

Input: acceleration factors c1, c2; random numbers r1,
r2; inertia weight α; T2 is the number of iteration; M2 is
the number of particles in the swarm; the targeted test
sample (xtxtxt, yt)

Output: the optimal adversarial sample (xaxaxa, yt)
1: p1, p2, . . ., pM2 = initialization of the

EAPSO(M2, (xtxtxt, yt))
2: for t = 1 to T2 (iteration counter) do
3: for each particle j = 1, . . .,M2 do
4: vjvjvj ← αvjvjvj + c1r1(p

∗
jp
∗
jp
∗
j − pjpjpj) + c2r2(pgbpgbpgb − pjpjpj)

5: pjpjpj ← pjpjpj + vjvjvj
6: if pro(pjpjpj) > pro(p∗jp

∗
jp
∗
j) then

7: p∗jp
∗
jp
∗
j ← pjpjpj

8: end if
9: if pro(pjpjpj) > pro(pgbpgbpgb) then

10: pgbpgbpgb ← pjpjpj
11: end if
12: end for
13: end for
14: (xaxaxa, yt)← (pgbpgbpgb + xtxtxt, yt)
15: return (xaxaxa, yt)

test sample. The initialization algorithm of the EAPSO will be
presented in Algorithm 3.

In Algorithm 3, (xtxtxt, yt) is the targeted test sample andpjpjpj (j =
1, . . .,M2) means different perturbations which will be added to
the targeted test sample. pro(pjpjpj) represents the probability that
the adversarial sample (xtxtxt + pjpjpj , yt) is classified correctly, where
the adversarial sample is combined by the targeted test sample
(xtxtxt, yt) and perturbation pjpjpj . The pbest of pjpjpj is denoted by p∗jp

∗
jp
∗
j

and the gbest is denoted by pgbpgbpgb. Evasion attack with the PSO
algorithm will be described in Algorithm 4.

It is important to mention that these two attacks are black-
box attacks, which mean the adversary knows nothing about the
target model when performing these attacks.

IV. IMPLEMENTING OUR ATTACKS ON

AUTONOMOUS VEHICLES

In this section, we first describe the processes of traffic sign
recognition system. Then, we present a brief introduction to
Convolutional Neural Network. After that, we explain on how

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 18:07:33 UTC from IEEE Xplore. Restrictions apply.

JIANG et al.: POISONING AND EVASION ATTACKS AGAINST DEEP LEARNING ALGORITHMS IN AUTONOMOUS VEHICLES 4443

Fig. 3. The main processes of traffic sign recognition system.

to perform the PAPSO and the EAPSO on traffic sign recognition
system, respectively.

A. Traffic Sign Recognition System in Autonomous Vehicles

There are many types of traffic signs, such as speed limits,
prohibitions, instructions, warnings, etc. These signs are of great
significance in regulating the driving behavior of drivers. Accu-
rately detecting and identifying traffic signs can help reduce
the driving pressure of drivers and avoid accidents. Nowadays,
with the rapid development of intelligent transportation systems,
driverless technology has received much attention and developed
rapidly. As a critical part of autonomous driving system, traffic
sign recognition system has been intensively explored [35],
[36]. Deep learning technology plays a critical role in traffic
sign recognition due to the advantages of high precision, high
robustness and low cost. As shown in Fig. 3, the system mainly
consists of four processes:

1) The image acquisition process is to collect the images
captured by camera device on the car.

2) The preprocessing process is to remove redundant back-
ground information of the image, eliminate the effects of
various noises, enhance and restore the areas containing
traffic signs and provide high-quality input images for
subsequent processes. For example, the image acquired in
the first step may have random noise, which is called image
deterioration. It will affect the accuracy of the subsequent
processes. By adopting some algorithms restoring the
image, image deterioration can be alleviated and the image
definition can be improved.

3) The traffic sign detection process is to locate the image
area containing the traffic sign. For instance, the input
image may contain not only the region of traffic sign,
but also a large number of regions that are useless for
recognition. In order to provide high-quality input images
for the next step, it is necessary to use some techniques
to minimize those useless areas. Generally, traffic signs
have a variety of features, such as color, shape, size, etc.
These features are helpful for locating the location of
traffic signs. By doing so, the complexity and difficulty
of the recognition process can be greatly reduced, and
the recognition accuracy and recognition speed can be
effectively improved.

4) The traffic sign recognition process is to classify the
image area identified in the previous stage. In recent
years, neural networks, especially convolutional neural
networks, have made important breakthroughs in the
field of image processing, such as research on face
recognition [37], [38]. Thus, we utilize convolutional neu-
ral network to classify the traffic signs in this paper.

B. A Brief Introduction to Convolutional Neural Network

CNN has shown impressive performance in the field of image
processing. It is generally applied in the traffic sign recognition
systems. The architecture of convolutional neural networks is
similar as traditional neural networks. The difference is that
CNN optimizes the training process of traditional neural net-
works: convolutional neural networks use convolution oper-
ations in the network layer, which is different from matrix
multiplication in traditional neural networks. The convolution
operation has the advantage of weight sharing and can effectively
reduce the number of parameters being trained. A classic CNN
architecture called LeNet-5 is depicted as in Fig. 4. In general,
CNN includes the following layers:
� The input layer is the input to the convolutional neural

network, which sends the data into the convolutional neural
network in the form of a matrix.

� The convolution layer is the most critical part of the
convolutional neural network. It consists of numerous
convolution units and the back-propagation algorithm is
employed to optimize the parameters of each convolution
unit. The convolution layer’s goal is to extract features of
the input. Some features of the input can be enhanced by
convolution operations and noise can be reduced.

� The pooling layer compresses the input feature map,
which makes the feature map smaller and simplifies the
network computation complexity. This also prevents over-
fitting to some extent.

� The fully connected layer connects all features and sends
output values to the classifier.

C. Implementing the PAPSO on Traffic Sign
Recognition System

The processes of the PAPSO against traffic sign recognition
system are described as below:

1) Set the number of particles M1, choose a normal image
in the traffic signs training dataset, and carry out the
initialization of the PAPSO.

2) Set the required parameters and perform the PAPSO
algorithm.

3) Through the iteration of the T1 round, select the particle
that minimizes the test accuracy as a poisoned sample and
put it into the original training dataset Dtr.

4) Repeat the procedure from step (1).
5) The poisoned sample dataset Dp generated by the above

process is the optimal set of poisoned samples.

D. Implementing the EAPSO on Traffic Sign
Recognition System

The processes of the EAPSO against traffic sign recognition
system are described as below:

1) Set the number of particles M2, obtain the targeted traffic
sign image, and carry out the initialization of the EAPSO.

2) Set the required parameters and perform the EAPSO
algorithm.

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 18:07:33 UTC from IEEE Xplore. Restrictions apply.

4444 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 69, NO. 4, APRIL 2020

Fig. 4. The architecture of LeNet-5.

3) Through the iteration of the T2 round, select the particle
that minimizes the probability that the targeted test sample
is classified correctly.

4) The optimal adversarial sample is the combination of the
particle and the targeted test sample.

V. EXPERIMENTAL ANALYSIS

In this section, we implement our attacks on traffic sign recog-
nition system assisted by CNN. Specifically, we first implement
the PAPSO in the case of single poisoned sample to analyze the
influence of hyper-parameters. After that, we evaluate the perfor-
mance of the learned model under multiple poisoned samples.
Finally, we implement the EAPSO on traffic sign recognition
system and evaluate the performance of the classifier on the
target sample.

A. Setup
� Datasets: Two famous traffic sign datasets (BelgiumTS

dataset1 and GTSRB dataset)2 are chosen as our datasets.
BelgiumTS dataset contains 62 different traffic signs,
whose training dataset includes about 4591 images while
the test dataset has around 2534 images. The material
is recorded in urban environments from Flanders region
in Belgium, by GeoAutomation; GTSRB dataset contains
43 different, whose training dataset includes about 39000
images and the test dataset has around 12000 images.

� Models: The architecture of CNN used in our experiments
is LeNet-5. The network is run over 150 epochs, with batch
size 128. A classification accuracy of about 95% is reached
under untainted training data on BelgiumTS dataset and
a classification accuracy of about 97% is reached under
untainted training data on GTSRB dataset.

� Attack Scenarios: As mentioned before, two attack sce-
narios are considered in our work: the PAPSO aims to
decrease the classification accuracy of the learned model
by injecting poisoned samples to the training dataset; the
EAPSO focuses on minimizing the probability that the
targeted test sample is classified correctly by adding some
hardly perceptible perturbations to the targeted test sample.

1https://btsd.ethz.ch/shareddata/
2http://benchmark.ini.rub.de/?section=gtsdb&subsection=dataset

Fig. 5. Results of the PAPSO on BelgiumTS dataset. (a) The modified range
= 5%. (b) The modified range = 7.5%. (c) The modified range = 10%. (d) The
modified range = 12.5%.

B. Experimental Results of the PAPSO

1) The Influence of Hyper-Parameters (in the Case of Single
Poisoned Sample): We first analyze the attack effect of single
poisoned sample with different hyper-parameters. Concretely,
we use modified range to describe the allowable variation range
of the sample’s feature value. For example, the modified range
means the range of the feature value v is limited to (0.95v,
1.05v) in the case that the modified range is 5%. Then we set the
modified range of the image to 5%, 7.5%, 10%, 12.5% and set
the population number M to 50, 100, 150, 200. The influence of
the two hyper-parameters on the effect of the PAPSO is shown
in Fig. 5 and Fig. 6.

From the results we have obtained, we observe that the larger
the number of particle swarms, the more effective the attack is.
That’s because the larger number of particle swarms enables the
particles to be distributed in the solution space more randomly,
which is easier for the algorithm to get a better solution. More-
over, a large modified range can also improve the attack effect,
but it may also reduce the stealth of the attack.

2) Multiple Poisoned Samples: After analyzing the influence
of the two hyper-parameters on the effect of the PAPSO, we
evaluate the performance of the learned model under multiple

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 18:07:33 UTC from IEEE Xplore. Restrictions apply.

JIANG et al.: POISONING AND EVASION ATTACKS AGAINST DEEP LEARNING ALGORITHMS IN AUTONOMOUS VEHICLES 4445

Fig. 6. Results of the PAPSO on GTSRB dataset. (a) The modified range =
5%. (b) The modified range = 7.5%. (c) The modified range = 10%. (d) The
modified range = 12.5%.

Fig. 7. Results of the PAPSO in the case of multiple poisoned samples.

poisoned samples. Specifically, we set the modified range to
12.5%, the population number M to 100, the number of itera-
tions T to 25 and carry out the PAPSO repeatedly. The results
are shown in Fig. 7, where poison rate means the proportion of
the poisoned samples to the total number of samples.

On the basis of our results, it can be concluded that the perfor-
mance of the learned model degrades significantly by injecting
poisoned samples into the training dataset. More concretely,
the red line represents the classification accuracy of the learned
model under BelgiumTS dataset, which has dropped from 95%
percent to 33% by injecting only 10% poisoned samples. The
blue line represents the classification accuracy of the learned
model under GTSRB dataset, which has declined from 97% to
63% by injecting only 10% poisoned samples.

C. Experimental Results of the EAPSO

As for BelgiumTS dataset, we select the test sample shown
in Fig. 8(a) below as the target sample, the probability that
the sample is classified correctly is about 93% without at-
tack. In terms of GTSRB dataset, we select the test sample

Fig. 8. The two target test samples. (a) The target sample in BelgiumTS
dataset. (b) The target sample in GTSRB dataset.

Fig. 9. Results of the EAPSO on BelgiumTS dataset. (a) The modified range
= 5%. (b) The modified range = 7.5%. (c) The modified range = 10%.
(d) The modified range = 12.5%.

shown in Fig. 8(b) below as the target sample, the probability
that the sample is classified correctly is about 99% without
attack. Similarly, we evaluate the effect of the EAPSO when
the modified range of the image is set to 5%, 7.5%, 10% and
12.5%, the population number M is set to 50, 100, 150, 200.
The experimental results of the EAPSO are shown in Fig. 9
and Fig. 10.

From the results we have obtained, we find that there is a
distinct decrease in the probability that the targeted sample is
classified correctly after several iterations. Specifically, in the
case of the modified range is 12.5% and the population number
is 200, that probability falls from 93% to 22% in terms of
BelgiumTS dataset and that probability falls from 99% to 24%
in terms of GTSRB dataset.

The adversarial samples with different modified ranges are
shown in Fig. 11 and Fig. 12. These adversarial samples are
normal samples combined with hardly perceptible perturbations.

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 18:07:33 UTC from IEEE Xplore. Restrictions apply.

4446 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 69, NO. 4, APRIL 2020

Fig. 10. Results of the EAPSO on GTSRB dataset. (a) The modified range =
5%. (b) The modified range = 7.5%. (c) The modified range = 10%. (d) The
modified range = 12.5%.

They can still be correctly classified under the recognition of the
human eyes, but may be misclassified under the recognition of
the deep learning model.

VI. DEFENSE STRATEGIES

A. Defense Strategies Against Poisoning Attack

Defense technologies against poisoning attack mainly fall into
two categories: data sanitization and robustness improvement.
Nelson et al. [39] proposed a defense algorithm called reject on
negative impact to remove malicious samples: firstly, they add a
suspicious sample to the original training dataset and get a new
training dataset. After that, a new classifier is trained under the
new training dataset. Then they evaluate and compare the perfor-
mance between new classifier and the original classifier (trained
under the original training dataset) under the same test dataset.
If the error rate of the new classifier is higher than the original
classifier, the suspicious sample will be recognized as a poisoned
sample and cleaned out of the training dataset. Otherwise, it will
be considered as an untainted sample. However, this method
requires a set of untainted samples and other samples will be
judged based on this untainted data set. In practice, it is often
difficult to obtain enough untainted samples. In addition, the
operations of this method are computationally intensive which
are not applicable to large-scale datasets. Biggio et al. [40]
proposed a defense technology which employed the method of
bagging ensemble construction. It can reduce the effect of the
poisoned samples in training dataset by improving the robustness
of the model.

B. Defense Strategies Against Evasion Attack

Defense strategies against evasion attack focus on improving
the robustness of learning algorithms. Papernot et al. [41] pro-
posed an algorithm called distillation to improve the robustness
of the machine learning model. Specifically, they train an initial
deep neural network based on the original training data X and
labelsY to obtain the probability vector predictionsF (X). Then
they use the training data X and the output result F (X) as a
new label to train a similar distillation network to obtain a new
probability vector predictions F d(X). After that, they use the
new distillation network to classify or predict. The sensitivity of
the model to small disturbances is reduced and the resistance to
the adversarial sample is improved through this method. Szegedy
et al. [42] proposed a method called adversarial training to
mitigate evasion attacks. Specifically, they introduced legalized
adversarial samples into the training dataset, which mimicked
the possible adversarial samples during the prediction process.
Adversarial training can gradually improve the classification
performance of the model on legal samples and adversarial
samples and make the learned model more robust against adver-
saries. Tramèr et al. [43] proposed ensemble adversarial training,
which augments training data with adversarial samples from
many other models. Song et al. [44] proposed Multi-strength
Adversarial Training (MAT), which combined the adversarial
training examples with different adversarial strengths to de-
fend evasion attacks. In fact, although adversarial training is
effective, it still cannot completely resist adversarial samples.
Mainly because it is unrealistic to include all possible adver-
sarial samples in the training set during the adversarial training
process.

VII. RELATED WORK

In terms of poisoning attack, Mei et al. [45] proposed a
poisoning attack framework employing the idea of machine
teaching [46], which is the inverse problem of machine learning.
In machine teaching, the learning algorithm L and the target
model θ∗ are known, the optimal training setD needs to be found
so that L(D) = θ∗. [47] extended the target of poisoning attacks
to multi-classification problems for the first time, they proposed
a new poisoning attack algorithm leveraging on the method of
back-gradient optimization. This algorithm can be performed
on a wider range of learning algorithms with lower complexity.
Jagielski et al. [48] proposed a poisoning attack framework on
regression algorithms. Specifically, they proposed two methods
of poisoning attacks: the first one is based on optimization, the
attacker’s strategy can be formulated as a two-level optimiza-
tion problem. The gradient descent method is used to optimize
this problem to obtain a better poisoning sample; the second
one is based on statistics, poisoning samples can be quickly
generated by statistically analyzing the position characteristics
of the poisoning samples that have performed well in the past.
Suciu et al. [49] defined the knowledge and capabilities of the
attacker in detail from four dimensions and proposed a targeted
poisoning algorithm StingRay, which can be applied to many dif-
ferent learning algorithms and can bypass two existing defense
algorithm.

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 18:07:33 UTC from IEEE Xplore. Restrictions apply.

JIANG et al.: POISONING AND EVASION ATTACKS AGAINST DEEP LEARNING ALGORITHMS IN AUTONOMOUS VEHICLES 4447

Fig. 11. The adversarial samples for BelgiumTS dataset. (a) The modified range = 5%. (b) The modified range = 7.5%. (c) The modified range = 10%. (d) The
modified range = 12.5%.

Fig. 12. The adversarial samples for GTSRB dataset. (a) The modified range = 5%.(b) The modified range = 7.5%. (c) The modified range = 10%. (d) The
modified range = 12.5%.

As for evasion attack, it was first proposed for some applica-
tions of machine learning in the field of security. The attacker
can generate adversarial samples that can successfully evade the
detection of the security system to achieve a malicious attack on
the system, which poses a serious threat to the security of the
system. For example, the attacker may evade spam detection
by adding some positive words to spam [31] or imitate the
identities of other users in the face recognition system [50].
As for the method to generate adversarial sample, Szegedy
et al. [42] employed L-BFGS algorithm to search the adversarial
samples in the input space and obtain the optimal adversarial
samples by adding small perturbations to the correctly classified
input sample. Goodfellow et al. [51] employed the FGSM (fast
gradient sign method) to obtain the minimum perturbations
r, so that the perturbed image can deceive the deep learning
model and make it misclassified. Moosavi-Dezfooli et al. [52]
proposed the DeepFool method to generate adversarial samples
with minimal perturbations. Their experiments demonstrated
that the adversarial samples produced by DeepFool have less
perturbation than FGSM under the similar deception rates. Pa-
pernot et al. [53] employed Jacobian Matrix to evaluate the
sensitivity of the model to each input feature and used adversarial
salience map to select the perturbation. After that, they ranked
the contribution of each input feature to the misclassified target
and generated an optimal adversarial sample. Szegedy et al. [42]
found transferability of the adversarial samples, which means
an adversarial sample against a machine learning model may
still be effective against a different machine learning model.

After that, considerable research efforts have been devoted to
the transferability of the adversarial sample [30], [54].

VIII. CONCLUSION

In this paper, we have proposed two attacks against traffic
sign recognition system in autonomous vehicles by leveraging
particle swarm optimization. Specifically, we first propose the
PAPSO (poisoning attack with particle swarm optimization)
which attacks the training process of the deep learning model
by injecting crafted samples into the training dataset. Then
we propose the EAPSO (evasion attack with particle swarm
optimization) which attacks the interference process of the deep
learning model by adding some hardly perceptible perturbations
to a normal sample and causing a misclassification of it. After
that, the PAPSO and the EAPSO are performed on traffic sign
recognition system. Experimental results suggest that the clas-
sification accuracy of the learned model has dropped from 95%
to 33% by injecting only 10% poisoned samples; the probability
that the targeted sample is classified correctly falls from 93%
to 22% by adding some hardly perceptible perturbations. Fi-
nally, some defense technologies against these two attacks are
presented.

REFERENCES

[1] N. Kato et al., “The deep learning vision for heterogeneous network traffic
control: Proposal, challenges, and future perspective,” IEEE Wireless
Commun., vol. 24, no. 3, pp. 146–153, Jun. 2017.

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 18:07:33 UTC from IEEE Xplore. Restrictions apply.

4448 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 69, NO. 4, APRIL 2020

[2] F. Tang et al., “On removing routing protocol from future wireless net-
works: A real-time deep learning approach for intelligent traffic control,”
IEEE Wireless Commun., vol. 25, no. 1, pp. 154–160, Feb. 2018.

[3] F. Tang, Y. Kawamoto, N. Kato, and J. Liu, “Future intelligent and secure
vehicular network toward 6G: Machine-learning approaches,” IEEE Proc.,
vol. 108, no. 2, pp. 292–307, Feb. 2020.

[4] J. Ning, J. Wang, J. Liu, and N. Kato, “Attacker identification and intrusion
detection for in-vehicle networks,” IEEE Commun. Lett., vol. 23, no. 11,
pp. 1927–1930, Nov. 2019.

[5] H. Nakayama, S. Kurosawa, A. Jamalipour, Y. Nemoto, and N. Kato,
“A dynamic anomaly detection scheme for AODV-based mobile ad hoc
networks,” IEEE Trans. Veh. Technol., vol. 58, no. 5, pp. 2471–2481,
Jun. 2009.

[6] Z. Ma et al., “Fine-grained vehicle classification with channel max pooling
modified CNNs,” IEEE Trans. Veh. Technol., vol. 68, no. 4, pp. 3224–3233,
Apr. 2019.

[7] Y. Li, Q. Luo, J. Liu, H. Guo, and N. Kato, “TSP security in intelligent and
connected vehicles: Challenges and solutions,” IEEE Wireless Commun.,
vol. 26, no. 3, pp. 125–131, Jun. 2019.

[8] Z. Ma, H. Yu, W. Chen, and J. Guo, “Short utterance based speech language
identification in intelligent vehicles with time-scale modifications and
deep bottleneck features,” IEEE Trans. Veh. Technol., vol. 68, no. 1,
pp. 121–128, Jan. 2019.

[9] G. Xu, H. Li, S. Liu, M. Wen, and R. Lu, “Efficient and privacy-preserving
truth discovery in mobile crowd sensing systems,” IEEE Trans. Veh.
Technol., vol. 68, no. 4, pp. 3854–3865, Apr. 2019.

[10] Z. Ma, J. Xie, Y. Lai, J. Taghia, J.-H. Xue, and J. Guo, “Insights into
multiple/single lower bound approximation for extended variational in-
ference in non-Gaussian structured data modeling,” IEEE Trans. Neural
Netw. Learn. Syst., to be published, doi: 10.1109/TNNLS.2019.2899613.

[11] K. C. Zeng et al., “All your GPS are belong to us: Towards stealthy
manipulation of road navigation systems,” in Proc. USENIX Secur. Symp.,
2018, pp. 1527–1544.

[12] J. Petit, B. Stottelaar, M. Feiri, and F. Kargl, “Remote attacks on automated
vehicles sensors: Experiments on camera and LiDAR,” in Black Hat Eur.,
vol. 11, pp. 1–13, 2015.

[13] C. Yan, W. Xu, and J. Liu, “Can you trust autonomous vehicles: Contactless
attacks against sensors of self-driving vehicle,” in Def. Con., vol. 24,
pp. 1–13, 2016.

[14] S. van de Beek, R. Vogt-Ardatjew, and F. Leferink, “Robustness of remote
keyless entry systems to intentional electromagnetic interference,” in Proc.
Int. Symp. Electromagn. Compat., 2014, pp. 1242–1245.

[15] A. Francillon, B. Danev, and S. Capkun, “Relay attacks on passive keyless
entry and start systems in modern cars,” in Proc. Netw. Distrib. Syst. Secur.
Symp., 2011, pp. 431–439.

[16] S. Woo, H. J. Jo, I. S. Kim, and D. H. Lee, “A practical security architecture
for in-vehicle CAN-FD,” IEEE Trans. Intell. Transp. Syst., vol. 17, no. 8,
pp. 2248–2261, Aug. 2016.

[17] B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks against support
vector machines,” in Proc. Int. Conf. Mach. Learn., 2012, pp. 1807–1814.

[18] G. Xu, H. Li, Y. Dai, K. Yang, and X. Lin, “Enabling efficient and geometric
range query with access control over encrypted spatial data,” IEEE Trans.
Inf. Forensics Secur., vol. 14, no. 4, pp. 870–885, Apr. 2019.

[19] H. Ren, H. Li, Y. Dai, K. Yang, and X. Lin, “Querying in internet of things
with privacy preserving: Challenges, solutions, and opportunities,” IEEE
Network, vol. 32, no. 6, pp. 144–151, Nov./Dec. 2018.

[20] W. Jiang, H. Li, S. Liu, Y. Ren, and M. He, “A flexible poisoning attack
against machine learning,” in Proc. IEEE Int. Conf. Commun., 2019,
pp. 1–6.

[21] H. Xiao, B. Biggio, G. Brown, G. Fumera, C. Eckert, and F. Roli, “Is feature
selection secure against training data poisoning,” in Proc. Int. Conf. Mach.
Learn., 2015, vol. 2, pp. 1689–1698.

[22] W. Jiang, H. Li, G. Xu, M. Wen, G. Dong, and X. Lin, “PTAS: Privacy-
preserving thin-client authentication scheme in blockchain-based PKI,”
Future Gener. Comput. Syst., vol. 96, pp. 185–195, 2019.

[23] H. Li, Y. Yang, T. H. Luan, X. Liang, L. Zhou, and X. Shen, “Enabling
fine-grained multi-keyword search supporting classified sub-dictionaries
over encrypted cloud data,” IEEE Trans. Dependable Secure Comput.,
vol. 13, no. 3, pp. 312–325, May-Jun. 2016.

[24] M. Fang, G. Yang, N. Z. Gong, and J. Liu, “Poisoning attacks to graph-
based recommender systems,” in Proc. 34th Annu. Comput. Secur. Appl.
Conf., 2018, pp. 381–392.

[25] H. Li, D. Liu, Y. Dai, T. H. Luan, and X. Shen, “Enabling efficient multi-
keyword ranked search over encrypted mobile cloud data through blind
storage,” IEEE Trans. Emerg. Topics Comput., vol. 3, no. 1, pp. 127–138,
Mar. 2015.

[26] H. Li, X. Lin, H. Yang, X. Liang, R. Lu, and X. Shen, “EPPDR: An
efficient privacy-preserving demand response scheme with adaptive key
evolution in smart grid,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 8,
pp. 2053–2064, Aug. 2014.

[27] H. Li, R. Lu, L. Zhou, B. Yang, and X. Shen, “An efficient merkle-tree-
based authentication scheme for smart grid,” IEEE Syst. J., vol. 8, no. 2,
pp. 655–663, Jun. 2014.

[28] G. Xu, H. Li, H. Ren, K. Yang, and R. H. Deng, “Data security issues
in deep learning: Attacks, countermeasures and opportunities,” IEEE
Commun. Mag., vol. 57, no. 11, pp. 116–122, Nov. 2019.

[29] M. Hao, H. Li, X. Luo, G. Xu, H. Yang, and S. Liu, “Efficient and privacy-
enhanced federated learning for industrial artificial intelligence,” IEEE
Trans. Ind. Informat., to be published, doi: 10.1109/TII.2019.2945367.

[30] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A.
Swami, “Practical black-box attacks against machine learning,” in Proc.
Conf. Comput. Commun., 2017, pp. 506–519.

[31] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. Tygar,
“Adversarial machine learning,” in Proc. 4th ACM Workshop Secur. artif.
Intell., 2011, pp. 43–58.

[32] G. Xu, H. Li, S. Liu, K. Yang, and X. Lin, “VerifyNet: Secure and verifiable
federated learning,” IEEE Trans. Inf. Forensics Secur., vol. 15, no. 1,
pp. 911–926, Jul. 2020.

[33] H. Li, D. Liu, Y. Dai, T. H. Luan, and S. Yu, “Personalized search
over encrypted data with efficient and secure updates in mobile clouds,”
IEEE Trans. Emerg. Topics Comput., vol. 6, no. 1, pp. 97–109,
Jan.–Mar. 2018.

[34] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in Proc. 6th Int. Symp. Micro Mach. Human Sci., 1995, pp. 39–43.

[35] J. Li and Z. Wang, “Real-time traffic sign recognition based on efficient
CNNs in the wild,” IEEE Trans. Intell. Transp. Syst., vol. 20, no. 3,
pp. 975–984, Mar. 2019.

[36] J. Kim, S. Lee, T.-H. Oh, and I. S. Kweon, “Co-domain embedding using
deep quadruplet networks for unseen traffic sign recognition,” in Proc.
32nd AAAI Conf. Artif. Intell., 2018, pp. 6975–6982.

[37] Q. Wang and G. Guo, “LS-CNN: Characterizing local patches at multiple
scales for face recognition,” IEEE Trans. Inf. Forensics Sec., vol. 15, no. 1,
pp. 1640–1653, Oct. 2020.

[38] W. Hu, Y. Huang, F. Zhang, and R. Li, “Noise-tolerant paradigm for
training face recognition CNNs,” in Proc. IEEE Conf. Comput. Vision
Pattern Recognit., 2019, pp. 11 887–11 896.

[39] B. Nelson et al., “Misleading learners: Co-opting your spam filter,” in
Proc. Mach. Learn. Cyber Trust, 2009, pp. 17–51.

[40] B. Biggio, I. Corona, G. Fumera, G. Giacinto, and F. Roli, “Bagging
classifiers for fighting poisoning attacks in adversarial classification tasks,”
in Proc. Int. Workshop Multiple Classifier Syst., 2011, pp. 350–359.

[41] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation as
a defense to adversarial perturbations against deep neural networks,” in
Proc. IEEE Symp. Secur. Privacy, 2016, pp. 582–597.

[42] C. Szegedy et al., “Intriguing properties of neural networks,” in Int. Conf.
Learn. Representations (ICLR), 2014.

[43] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and P.
McDaniel, “Ensemble adversarial training: Attacks and defenses,” in Int.
Conf. Learn. Representations (ICLR), 2018.

[44] C. Song et al., “MAT: A multi-strength adversarial training method to
mitigate adversarial attacks,” in Proc. IEEE Comput. Soc. Annu. Symp.
VLSI, 2018, pp. 476–481.

[45] S. Mei and X. Zhu, “Using machine teaching to identify optimal training-
set attacks on machine learners,” in Proc. Nat. Conf. Artif. Intell., 2015,
pp. 2871–2877.

[46] X. Zhu, “Machine teaching: An inverse problem to machine learning and
an approach toward optimal education,” in Proc. Nat. Conf. Artif. Intell.,
2015, pp. 4083–4087.

[47] L. M.-González et al., “Towards poisoning of deep learning algorithms
with back-gradient optimization,” in Proc. 10th ACM Workshop Artif.
Intell. Secur., 2017, pp. 27–38.

[48] M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nitarotaru, and B. Li,
“Manipulating machine learning: Poisoning attacks and countermeasures
for regression learning,” in IEEE Proc. Symp. Secur. Privacy, 2018,
pp. 931–947.

[49] O. Suciu, R. Marginean, Y. Kaya, H. Daume III, and T. Dumitras, “When
does machine learning fail? Generalized transferability for evasion and
poisoning attacks,” in Proc. USENIX Secur. Symp., 2018, pp. 1299–1316.

[50] K. W. Bowyer, “Face recognition technology: Security versus privacy,”
IEEE Technol. Soc. Mag., vol. 23, no. 1, pp. 9–19, Spring 2004.

[51] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in Int. Conf. Learn. Representations (ICLR), 2015.

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 18:07:33 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1109/TNNLS.2019.2899613
https://dx.doi.org/10.1109/TII.2019.2945367

JIANG et al.: POISONING AND EVASION ATTACKS AGAINST DEEP LEARNING ALGORITHMS IN AUTONOMOUS VEHICLES 4449

[52] S.-M. M.-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: A simple and
accurate method to fool deep neural networks,” in Proc. IEEE Conf.
Comput. Vision Pattern Recognit., 2016, pp. 2574–2582.

[53] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A.
Swami, “The limitations of deep learning in adversarial settings,” in IEEE
Proc. Eur. Symp. Secur. Privacy, 2016, pp. 372–387.

[54] S.-M. M.-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Universal
adversarial perturbations,” in Proc. IEEE Conf. Comput. Vision Pattern
Recognit., 2017, pp. 1765–1773.

Wenbo Jiang (Student Member, IEEE) received the
B.S. degree in information security from the Univer-
sity of Electronic Science and Technology of China
(UESTC), Chengdu, China, in 2017, where he is
currently working toward the master’s degree with
the School of Computer Science and Engineering. His
research interests include cryptography, blockchain,
and the machine learning.

Hongwei Li (Senior Member, IEEE) received the
Ph.D. degree from the University of Electronic Sci-
ence and Technology of China (UESTC), Chengdu,
China, in June 2008. He is currently the Head and
a Professor with Department of Information Secu-
rity, School of Computer Science and Engineering,
UESTC. He worked as a Postdoctoral Fellow with the
University of Waterloo from October 2011 to October
2012. His research interests include network security
and applied cryptography. He is the Distinguished
Lecturer of IEEE Vehicular Technology Society.

Sen Liu (Student Member, IEEE) received the B.S.
degree in information security from Guizhou Univer-
sity, Guiyang, China, in 2017. He is currently working
toward the master’s degree with the School of Com-
puter Science and Engineering, University of Elec-
tronic Science and Technology of China, Chengdu,
China. His research interests include cryptography
and searchable encryption.

Xizhao Luo received the B.S. and M.S. degrees from
the Xi’an University of Technology, Xi’an, China, in
2000 and 2003, respectively, and the Ph.D. degree
from Soochow University, Suzhou, China, in 2010.
He held a Postdoctoral position with the Center of
Cryptography and Code, School of Mathematical Sci-
ence, Soochow University, for three years. His main
fields of interest are cryptography and computational
complexity.

Rongxing Lu (Senior Member, IEEE) received
the Ph.D. degree from the University of Waterloo,
Waterloo, ON, Canada, in 2012. He is an Associate
Professor with the Faculty of Computer Science,
University of New Brunswick (UNB), Fredericton,
NB, Canada. Before that, he worked as an Assistant
Professor with the School of Electrical and Elec-
tronic Engineering, Nanyang Technological Univer-
sity, Singapore from April 2013 to August 2016. He
worked as a Postdoctoral Fellow with the University
of Waterloo from May 2012 to April 2013. He was

awarded the most prestigious “Governor Generals Gold Medal,” He won the
8th IEEE Communications Society (ComSoc) Asia Pacific (AP) Outstanding
Young Researcher Award, in 2013. He is presently a Senior Member of IEEE
Communications Society. He currently serves as the Vice-Chair (Conferences) of
IEEE ComSoc CIS-TC. He is the winner of 2016–2017 Excellence in Teaching
Award, FCS, UNB.

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 18:07:33 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

