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Abstract—The rapid convergence of legacy industrial
infrastructures with intelligent networking and computing
technologies (e.g., 5G, software-defined networking, and
artificial intelligence), have dramatically increased the at-
tack surface of industrial cyber—physical systems (CPSs).
However, withstanding cyber threats to such large-scale,
complex, and heterogeneous industrial CPSs has been
extremely challenging, due to the insufficiency of high-
quality attack examples. In this article, we propose a novel
federated deep learning scheme, nhamed DeepFed, to de-
tect cyber threats against industrial CPSs. Specifically, we
first design a new deep learning-based intrusion detection
model for industrial CPSs, by making use of a convolu-
tional neural network and a gated recurrent unit. Second,
we develop a federated learning framework, allowing mul-
tiple industrial CPSs to collectively build a comprehensive
intrusion detection model in a privacy-preserving way. Fur-
ther, a Paillier cryptosystem-based secure communication
protocol is crafted to preserve the security and privacy of
model parameters through the training process. Extensive
experiments on a real industrial CPS dataset demonstrate
the high effectiveness of the proposed DeepFed scheme in
detecting various types of cyber threats to industrial CPSs
and the superiorities over state-of-the-art schemes.

Index Terms—Data privacy, deep learning, federated
learning, industrial cyber—physical system (CPS), intrusion
detection.
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|. INTRODUCTION

NDUSTRIAL cyber—physical systems (CPSs) are gener-
Ially referred to as large-scale, geographically-dispersed,
complex, and heterogeneous Internet-of-Things (IoT) in an
industrial context, such as smart grids, autonomous trans-
portation systems, and gas pipelining systems [1]-[3]. In-
dustrial CPSs are encapsuled with intelligent networking and
computing technologies, such as 5G (and beyond), software-
defined networking (SDN), network function virtualization,
cloud computing, and artificial intelligence (AI), with exist-
ing industrial control systems (ICSs), a general architecture
of which is shown in Fig. 1. Industrial CPSs are envisioned
to facilitate remote access, promote smart services, enable
big data analytics, and allow better provisioning of network
resources [4].

The benefits from industrial CPSs seem clear, but these ad-
vancements have not come without risk [5]-[7]. Legacy in-
dustrial infrastructures have been implemented with poor secu-
rity measures, leaving numerous potential vulnerabilities unat-
tended. The rapid fusion of advanced networking and computing
technologies has dramatically expanded the threat landscape
by opening up new vulnerabilities that can be exploited across
softwarized endpoints, networks, applications, and cloud ser-
vices. One high-profile security incident is the BlackEnergy
malware-based cyber assault on Ukraine’s power grid in De-
cember 2015 [8], where more than 30 power substations were
switched OFF, and about 230 thousand people were left in
dark for a period from one to six hours. Other notorious cyber
incidents associated with industrial CPSs include the Stuxnet
on Iran’s nuclear power plant [9], VPNFilter on supervisory
control and data acquisition (SCADA) protocols [10], unautho-
rized penetration on Australia’s Maroochy sewage factory [11],
etc. Such incidents demonstrate that industrial CPSs are much
likely to remain ongoing targets of interest in the near future,
particularly by state-sponsored or affiliated actors. The impor-
tance of cybersecurity in industrial CPSs are reinforced by the
U.S. Department of Homeland Security in the 2016 ICS-CERT
Annual Assessment Report [12], which remarked that “rapid
increases in the connectivity of operational technology through
the Internet of Things raises new challenges for control systems
security,” and also by the U.S. Department of Commerce in the
NIST Guide to ICS security [13], stating that “cybersecurity is
essential to the safe and reliable operation of modern industrial
processes.”
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Fig. 1.  General architecture of industrial CPSs.

The state-of-the-art literature has seen an increasing interest
in addressing cybersecurity issues pertaining to industrial CPSs,
placing priorities on Al relevant intrusion detection schemes
in recent years. For example, in 2019, Qiu et al. [14] devel-
oped a dueling deep (Q-learning-based approach to mitigating
cyber threats against safe communications in software-defined
industrial IoT. In early 2020, Ismail et al. [15] investigated
electricity theft attacks in smart grid CPSs, and proposed a deep
learning-based intrusion detection system for such cyberattacks.
More recent studies can be seen in Section II. Unfortunately,
most of the existing Al relevant intrusion detection schemes
associated with industrial CPSs are developed on a strong as-
sumption that sufficient high-quality examples of cyberattacks
on industrial CPSs are always available, readily for the sys-
tem defender to build a desired intrusion detection model. In
real-world scenarios, however, one industrial CPS owner usually
has rather limited attack examples, making the model building
work incredibly challenging. Further, industrial CPS owners
are usually unwilling to share such attack examples (neither
those normal behavior examples) to the third parties, because
highly-sensitive information about their critical industrial CPSs
is always involved in these data resources. In such situations,
we see that building a desired Al-based intrusion detection
model for industrial CPSs is an apparently intractable task.
Specifically, we first design a novel deep learning model, based
on CNN and gated recurrent unit (GRU), to detect various types
of cyber threats against industrial CPSs. In addition, we develop
anew federated learning framework for multiple industrial CPS
owners to collectively build a comprehensive intrusion detection
model in a privacy-preserving way. Moreover, we design a
secure communication protocol based on the Paillier public-key
cryptosystem to preserve the security and privacy of model
parameters through the training process. The main contributions
of this work are threefold.

1) First, we create a novel deep learning-based intrusion
detection model for industrial CPSs, by making use of
CNN and GRU. This model is highly effective in de-
tecting various types of cyber threats against industrial
CPSs, such as denial-of-service (DoS), reconnaissance,
response injection, and command injection attacks.

2) Second, a federated learning framework is developed,
which, on the one hand, enables building a comprehen-
sive intrusion detection model by taking advantage of
data resources from multiple industrial CPS owners (in
the same domain). On the other hand, this framework
supports data processing at each industrial CPS’s own
premise, allowing effective privacy preservation of data
resources.

3) Third, we craft a Paillier public-key cryptosystem-based
secure communication protocol for the developed fed-
erated learning framework, by which the security and
privacy of model parameters through the training process
can be well preserved.

The remainder of this article is organized as follows. In
Section II, we review the state-of-the-art studies on intrusion
detection schemes for industrial CPSs and federated learning-
based intrusion detection methods. In Section III, we introduce
the system model and threat model considered in this work. Sec-
tion I'V elaborates on the proposed DeepFed scheme. Section VI
gives the performance evaluation. Finally, Section VI concludes
this article.

Il. RELATED WORK

In this section, we briefly review the state-of-the-art studies
focusing on intrusion detection schemes for industrial CPSs as
well as federated learning-based intrusion detection methods.

A. Intrusion Detection Schemes for Industrial CPSs

Recent years have witnessed an increasing research interest
in intrusion detection schemes in the context of industrial CPSs.
For example, in 2018, Yang et al. [16] designed an approach
based on zone partition to detect both known and unknown
cyberattacks for industrial CPSs, even when several zones are
compromised simultaneously. Also, Wang et al. [17] in 2018
proposed a stacked auto-encoder-based deep learning scheme to
detect two-stage sparse cyberattacks against the ac state estima-
tion in smart grid CPSs. In 2019, Qiu et al. [14] developed a du-
eling deep Q-learning-based approach to mitigate cyber threats
against safe communications in software-defined industrial IoT.
In the same year, Yang et al. [18] designed a convolutional
neural network (CNN)-based intrusion detection system for
SCADA networks, in order to protect industrial CPSs from both
conventional and SCADA specific network-based cyberattacks.
In early 2020, Ismail er al. [15] investigated electricity theft
attacks in smart grid CPSs and proposed a deep learning-based
intrusion detection system for such cyberattacks. Also in 2020,
Liu et al. [19] presented a hierarchically distributed intrusion
detection framework for the security monitoring of large-scale
industrial CPSs. It takes advantage of the security monitoring of
physical systems and information systems to achieve all-round
security protection of industrial CPSs.

B. Federated Learning-Based Intrusion
Detection Methods

Emerged as a promising tool for addressing data islands issues
in recent years, federated learning has been widely adopted
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Fig. 2. System model under consideration.

in many areas. Particularly, a series of researchers have re-
cently conducted federated learning-based studies to achieve
intrusion detection. For example, in 2018, Preuveneers et al.
[20] described a permissioned blockchain-based federated learn-
ing method to achieve an anomaly detection machine learning
model, where contributing parties in federated learning can be
held accountable and have their model updates audited. In 2019,
Nguyen et al. [21] designed an autonomous self-learning dis-
tributed system for detecting compromised IoT devices, which
employed a federated learning approach to achieve intrusion
detection. In the same year, Zhao et al. [22] proposed a multitask
deep neural network in federated learning (MT-DNN-FL) to
perform network anomaly detection task. In 2020, Chen et al.
[23] proposed a federated deep autoencoding Gaussian mixture
model (FDAGMM) to improve the disappointing performance
of traditional DAGMM in network anomaly detection caused by
limited data amount.

Ill. SYSTEM MODEL AND THREAT MODEL

In this section, we introduce the system model and threat
model considered in this work.

A. System Model

The system model under consideration is a federated deep
learning framework (see Fig. 2), which mainly comprises three
types of entities, i.e., a trust authority, a cloud server, and K
industrial agents.

1) Trust Authority: The trust authority undertakes the task of
bootstrapping the whole system, generating public keys
and private keys for the Paillier public-key cryptosystem-
based secure communication protocol, as well as es-
tablishing secure communication channels for the cloud
server and each industrial agent.

2) Cloud Server: The cloud server is responsible for building
a comprehensive intrusion detection model, by federating
the model parameters of those locally learned at each
industrial agent’s own premise. Multiple rounds of in-
teractions between the cloud server and each industrial
agent are demanded in order to obtain a final “perfect”
intrusion detection model.

3) Industrial Agents: Each industrial agent, on behalf of the
industrial CPS owner, is in charge of building a local
intrusion detection model based on its own collected
industrial CPS data and aiding in updating the parameters
of the intrusion detection model by recurrently interacting
with the cloud server.

B. Threat Model

In the threat model, we consider cyber threats both targeting
the industrial CPSs and those aiming at our federated deep
learning framework.

1) Cyber Threats Against Industrial CPSs: Unlike tradi-
tional computer systems, industrial CPSs are being exposed
to not only traditional cyber threats, such as DoS and DDoS
attacks, but also a line of highly customized new cyber threats
tailored to industrial systems, such as command injection and
response injection attacks. In this article, we consider all the
abovementioned cyber threats, with a focus on the following.

a) Reconnaissance attacks are usually conducted for gather-
ing valuable information about industrial CPSs, mapping
the network architectures, and identifying device features,
such as the manufacturer, model number, supported net-
work protocols, and device addresses.

b) Response injection attacks are generally carried out to
interfere with monitoring and reporting the state of a
remote process in industrial CPSs. These attacks can
falsify responses reporting to querying parties, such that
biased system state information is provided.

¢) Command injection attacks are launched often by in-
jecting falsified control or configuration commands to
mislead system behaviors of industrial CPSs. Such attacks
can cause unauthorized modification of device configura-
tions, process setpoints, or communication destinations.

d) DoS attacks are mounted usually by flooding the targets
with superfluous requests in an extremely high frequency
to exhaust the resources of server systems in industrial
CPSs, which can disrupt the services or prevent legitimate
requests from being fulfilled.

2) Cyber Threats Against Federated Learning Framework:
In the considered federated deep learning framework, it is as-
sumed that the trust authority is a fully trusted party, and the
cloud server is a semihonest party who is honest in conducting
all the given tasks but curious about the model parameters of
the intrusion detection model. Also, we assume that all indus-
trial agents are semihonest, who strictly follow the designed
protocols but may be interested in other agents’ data resources.
Further, it is also taken into consideration that malicious eaves-
droppers or other external attackers may intercept with the
communication links in an attempt to access both data resources
of each industrial CPSs and the parameters of the intrusion
detection model. In this case, we consider the following two
types of cyber threats.

a) Eavesdropping of data resources: As for the industrial
CPS owners, their data resources for training the intrusion
detection model, particularly for those attack examples,
are highly sensitive and even national critical. If shared
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with the cloud server, it may lead to considerable business
losses or severe national security risks.

b) Eavesdropping of model parameters: The parameters of
an intrusion detection model contain critical information
about the data resources. If they are accessed by the out-
side world in an unauthorized way, some basic knowledge
of such data resources, e.g., type of cyber threats or its
example distributions may possibly be leaked.

IV. PROPOSED DEEPFED SCHEME

In this section, we elaborate on the proposed DeepFed scheme
by outlining the scheme workflow first, and then introducing the
designed CNN-GRU-based intrusion detection model, followed
by the Paillier-based secure communication protocol.

A. Workflow of the DeepFed Scheme

The basic idea of the DeepFed scheme is networking multiple
industrial CPS owners to collectively build a deep learning intru-
sion detection model, based on a developed federated learning
framework along with a Paillier-based secure communication
protocol. The complete workflow of the DeepFed scheme can
be described in five phases, which is given below (see also
Algorithm 1 for the workflow).

1) System lInitialization: In the system initialization phase,
the trust authority bootstraps the whole system by conduct-
ing KeyGenerate(k) (see more details in Section IV-C), by
which the public key P = {n, g} as well as the private key
SK = {A, pu} used in the Paillier-based secure communication
protocol can be generated, and a secure channel between the
cloud server and each industrial agent is established. Then,
the cloud server selects an array of initial parameters w® for
the deep learning-based intrusion detection model and some
other parameters relevant to the model training, i.e., the learning
rate 7, exponential decay rates for moment estimates p;, p»
€[0,1), a small constant used for numerical stabilization ¢,
loss function £, and batch size B. In addition, each industrial
agent Ay, reports the size Ny, of its own data resource Dy, to the
cloud server, where k € K = {1,2, -, K}, and then, the cloud
server computes a contribution ratio for each industrial agent
by ar = Ni/ (N1 + Ny + -+ + Nkg). Last, define a positive
integer R denoting the total rounds of communications between
the cloud server and an industrial agent.

2) Local Model Training by Industrial Agents: After receiv-
ing initial model parameters w” as well as 1, p1, p2, s, £, B from
the cloud server, each industrial agent trains a deep learning-
based intrusion detection model locally, using their own private
data resource Dy, (k € K). The detailed training procedure is
summarized in Algorithm 2. Since the local model training is
performed offline, it is assumed that sufficiently strong compu-
tational capabilities can be provided, so that there is no need
to care too much about the computational complexity of this
algorithm.

3) Model Parameters Encryption by Industrial Agents:
When a local deep learning model is trained, each in-
dustrial agent Aj encrypts the model parameters wj us-
ing ParaEncrypt(wy, ;, PK), where wi = (wy j,wj 5, ,

Algorithm 1: Privacy-Preserving Federated Learning

Input: The security parameter x, industrial agents set .4,
data resources of all industrial agents {Dy|
k € K}, number of communication rounds R.
Output: The comprehensive deep learning model.
Initialization:

a). The trust authority generates the key pair by
{PK,SK} = KeyGenerate(x);

b). The trust authority establishes a secure channel for
the cloud server and each industrial agent;

¢). The cloud server initializes 7, p1, p2,s, £, B, and
initial model parameters w;

d). Each Ay, reports a size Ny, to the cloud server, where
k € KC; then, the cloud server computes each contribution
ratio by ay = Ny /(N1 + N2 + ... + Ng);

e). Initialize the communication round index by r = 1.
Procedure:
for r < R do
(I). For industrial agents:

10 for Vk € K do

1 Ay, computes the 7-th round local model
parameters w;, as per Algorithm 2 with inputs: 7,
01, P2, 6> £ B, w'L, A, Dy;

[

- w

wm

L e 9

12 for Vj € T do

13 ‘ Epai(wz,ﬁj) = ParaEncrypt(w;j,PlC);
14 end

15 Ay, uploads the encrypted model parameters

{Epai(wy, ;)|7 € T} to the cloud server;
16 end

17 (ID). For cloud server:

18 for Vj € T do

19 ¢j = ParaAggregate(wy ;, -+, wi ;,
Qi)

20 end

21 The cloud server distributes the aggregated

ciphertexts ¢ = {c;[j € T} to all Ax(k € K);

22 (III). For industrial agents:

23 for Vk € K do

24 for Vj € T do

25 ‘ wy, ; = ParaDecrypt(c;, SK);

26 end

27 Ay, updates its local deep learning model using
the updated parameters w" = {@y}, ;|j € T};

28 end

29 r<r+1

30 end

31 return The comprehensive deep learning model with

parameters w'.

wy ) and j € T ={1,2,---,T}. Then, the encrypted param-
eters { Epqi(wy, ;)|j € T} of the local deep learning model are
then uploaded to the cloud server by each industrial agent, where
T is the total number of parameters in a local deep learning
model.

4) Model Parameters Aggregation by the Cloud Server:
Given the contribution ratios and encrypted model parameters
from all industrial agents, the cloud server aggregates them by
ParaAggregate(Epai(wy, ), -+, Epai(Wy, 7)1, , k).
Then, the aggregated ciphertexts ¢ = {c¢;|j € T} are sent back
to the industrial agents.
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Fig. 3.  Architecture of designed CNN-GRU model.

5) Local Model Updating by Industrial Agents: By decrypt-
ing the ciphertexts c using ParaDecrypt(c;,SK(j € T), each
industrial agent obtains the updated model parameters w”. Then,
the parameters of the local deep learning model are then updated
by w”.

After R rounds (an empirically determined threshold) of
interactions between the cloud server and industrial agents, a
comprehensive deep learning-based intrusion detection model
can finally be obtained. As we can see from Algorithm 1,
each industrial agent Ay needs to conduct parameter encryption
and decryption tasks, which in total require 7" exponentiation
operations in Z), and a line of multiplication operations in Z,
(that can be relatively negligible) in each communication round.
In this way, the computational cost of each industrial agent Ay is
almost linearly proportionally to the total number of parameters
T in a local deep learning model. As for the cloud server, it
only needs to perform K times of multiplication operations in
7, when aggregating all industrial agents’ model parameters
in each communication round.

B. CNN-GRU-Based Intrusion Detection Model

In this part, we introduce the newly designed CNN-GRU-
based intrusion detection model.

1) Model Architecture: The designed model is mainly com-
posed of a CNN module and a GRU module, followed by an
multilayer perceptron (MLP) module, and then a softmax layer
(see Fig. 3), they are respectively described as below:

a) CNN Module: The CNN module mainly involves three
convolutional blocks, and each convolutional block con-
sists of a convolutional layer, a batch normalization layer,
and a max-pooling layer.

b) GRU Module: The GRU module is composed of two
identical GRU layers.

¢) MLP Module: The MLP module involves two fully con-
nected layers and a dropout layer (used to prevent the
model from overfitting).

d) Softmax Layer: The softmax layer is exploited to map the
nonnormalized output of the MLP module to a probability
distribution over predicted classes.

Given a feature vector = (a one-dimensional vector denoting
the numerical features of a network traffic data example) being
the input of the designed model, the GRU module and CNN
module then process it, respectively. Specifically, as for the GRU

module, it regards = as a multivariate time series with a single
time step. Prior to delivering « to the GRU module, a dimension
shuffle layer is implemented, which transposes the temporal
dimension of the feature vector. It is given by & = Shuffle(z).
Then, the GRU module processes Z in the following ways with
the purpose of extracting the temporal patterns:

hy = GRU,(Z), and v = GRU,(h;) (1)

where GRU;, i € {1,2}, represents the ith GRU layer, hyisa
hidden vector, and v is the final output of the GRU module.

When it comes to the CNN module, it treats x as a univariate
time series with multiple time steps

hy = ConvBlock, (x)
hy = ConvBlock; (hy)
hs = ConvBlock; (h,)

1 = Flatten (h3) 2)

where the ConvBlock;, 7 € {1,2,3}, represents the ith convo-
lutional block in the CNN module, k1, ko, b3 € R¥ are hidden
vectors. Then, the output of the three convolutional block is
transferred to a flatten layer to be flattened, the result of which
is . Following the CNN module and GRU module, ¢ and v
are concatenated and then fed into the MLP module, which is
described by

¢ = Concate(u, V)

ha:tilgﬂ
hy = FCy(R)
7 = Dropout(h}) 3)

where Concate represents the concatenation operation, c¢ is
the concatenated result, FC; and FC, denotes the two fully
connected layer, Dropout denotes the dropout layer. Moreover,
h% and T are the output of the two fully connected layer and
the dropout layer, respectively. At last, the softmax layer pro-
vides the final classification result by § = Softmax(7), where
Softmax represents the softmax layer and y is the final classifi-
cation result of the network traffic data.

Since the CNN-GRU model performs multiclassification to
detect I' types of attacks in industrial CPSs, the cross-entropy
function is used as the loss function, which is defined by

B-1T'-1

L= *%Zzym‘ log §i,; “4)

i=0 j=0

where B denotes the batch size, y; ; is the true label, and 9; ;
is the probability that the ith example is predicted to be the jth
label.

2) Local Model Training: Each industrial agent Ax(k € K)
locally train the proposed deep learning model on their own
data resource Dy, with reference to Algorithm 2. Specifically,
in the rth communication round, each industrial agent Ay, first
updates model parameters w}, based on the given updated model
parameters w'. Then, using the same data resource Dy, indus-
trial agent Ay, retrains the deep learning model based on the
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Algorithm 2: Local Deep Learning Model Training

Input: 1, p1, p2,5, &, B, w1, A, D;
Output: w;,
1 Initialization:
2 a). Initialize the first and second moment variables by
s =0 and v = 0, respectively;
b). Split Dy, into batches with equal size B;
c). Set the model parameters by w;, < wil
Procedure:
repeat
for each batch of data resource do
a). Compute the gradient by gd < Vwr £;
b). Update the biased first moment estimate by
s < p1s+ (1 —p1)gd;
10 ¢). Update the biased second moment estimate by
v 4= p2v + (1 = p2)gd?;
1 d). Compute the bias-corrected first moment
estimate by § < ﬁ;
12 e). Compute the bias-corrected second moment
estimate by 0 <

D-IE-CREE B D

v .

195’

13 f). Update the model parameters by
T o s .

Wi & Wi = s

14 end
5 until The loss function £ converages;
6 return w,

—

optimizer adaptive moment estimation (Adam) that is able to
facilitate the convergence of the loss function.

C. Paillier-Based Secure Communication Protocol

In this part, we design a Paillier-based secure communication
protocol for the developed federated learning framework. It
is worth noting that the advanced encryption standard (AES)
algorithm [24] is employed in our protocol to establish a secure
channel between the cloud server and each industrial agent,
which is helpful in mitigating malicious eavesdroppers and other
external attackers. The Paillier cryptosystem [25], supporting
an unlimited number of homomorphic additions, is exploited in
our protocol to achieve secure and privacy-preserving federated
learning over the cloud server. It is composed of the following
four functions.

1) KeyGenerate(x): Given a security parameter x € Z™, the
trust authority generates the public key PXC = (n, ¢) and the cor-
responding private key SIC = (A, u) as per the standard Paillier
cryptosystem [25], where n is the product of two large prime
numbers, g € Z*, is a generator, 1 = (L(g* mod n?))~!' mod
n, and function L is defined as L(a) = (o — 1)/n. Then, the
trust authority publishes the P/C and distributes SIC = (A, 1)
to all the industrial agents. In addition, to establish a secure
communication channel, the trust authority generates a sym-
metric key s; for the cloud server and each industrial agent A;,
ie{l,2,---, K}, respectively.

2) ParaEncrypt(m,PK): Define a function v/ = f(v) =
103 - v mod n, and given a message m, compute m’ = f(m).
In this way, each model parameter is converted to a positive
integer m’ € Z,,. Select a random number r € Z} and encrypt

the model parameter using the public key PK by

m

Epgi(m) = g™ .r" mod n? = g™ - #" mod n?.  (5)

3) ParaAggregate(Ep.;(my), -+ ,Epai(mi), a1, ,ax):
Given contribution ratios {a, ay, -+ ,ak } of each industrial
agent, the cloud server amplifies these ratios by 1000 times to
convert them as positive integers. With K model parameters
{Epai(mi1), Epai(ma), -+, Epai(mg)} in hand, the cloud
server then aggregates these data by

K
c= H Epai(mi)
i=1

_am, .amn arm),.aon agm. KN 2
=gt g® ey g Kri" mod n
K
K am) an 2
— i= i . . .
1 r" mod n 6

i=1

4) ParaDecrypt(c, SK): When receiving the ciphertext c of a
summed updated model parameter from the cloud server, each
industrial agent decrypts the summed updated model parameter
TMum DY

mlym = L(c mod n?) -y mod n

3

L(g* mod n?)

K K )
L(g>=1 - [, i mod n?)
= mod n

K
= Z a;m;; mod n. 7
i=1
Then, compute the average value of the summed updated model
parameter by m' = ml,,,/1000. Recall that 1000 denotes a
scalar used to convert the contribution ratios to a positive integer.
Define a functionv = f~!(/) = 1078 - v/ mod n. Considering
that the original model parameters can either be positive (less
than n /2 after the conversion by v = f(v)) or negative (larger
than n /2 after the conversion), we recover the updated model
parameter to the original scale by

mo=flw),  iftw <2,
m = f'(m' —n), otherwise.

®)

V. PERFORMANCE EVALUATION

In this section, we conduct extensive experiments to evalu-
ate the performance of our proposed DeepFed scheme. First,
we give the experiment settings, including the environmen-
tal setup, data resource description and partitioning, baseline
studies, and performance metrics. Then, we carry out a series
of experiments to compare the performance of our proposed
intrusion detection model with some state-of-the-art studies,
including the Schneble’s [26], Nguyen’s [21], and Chen’s [27],
under our developed federated learning framework. In addi-
tion, we also compare the performance of the developed in-
trusion detection model with those local intrusion detection
models built by each industrial agent as well as the ideal in-
trusion detection model built by a central entity on all data
resources.
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TABLE |
NUMERICAL RESULTS OF INTRUSION DETECTION MODELS WITH VARYING COMMUNICATION ROUNDS UNDER THREE DIFFERENT SCENARIOS
K R Schneble et al. [26] Nguyen et al. [21] Chen et al. [27] The Proposed DeepFed
Accuracy Precision Recall  F-score  Accuracy Precision Recall F-score  Accuracy Precision Recall F-score  Accuracy Precision Recall — F-score
2 09812 09870 09639 0.9748 0.9818 09882  0.9623  0.9746 0.9843 09860  0.9674 0.9762 0.9915  0.9922  0.9690  0.9802
4 09816 09879 09645 0.9756 0.9903 09883  0.9676  0.9776 0.9906  0.9928  0.9680  0.9799 0.9919  0.9938  0.9693  0.9810
3 6 09818 0.9880 0.9646 0.9757 0.9906 09884  0.9676  0.9776 0.9911 09932  0.9683  0.9803 0.9920  0.9938  0.9690  0.9809
8 09818 0.9880 0.9646 0.9757 0.9908 09886  0.9676  0.9777 0.9912 09933  0.9684  0.9803 0.9919  0.9938  0.9680  0.9804
10 0.9820 0.9882  0.9646 0.9759 0.9909 09886  0.9676  0.9778 0.9913  0.9934  0.9682  0.9803 0.9920  0.9886  0.9736  0.9810
2 09806 0.9861 0.9614 0.9731 0.9811 09869  0.9640  0.9749 0.9840 09882  0.9628 0.9748 0.9909 09918  0.9682  0.9796
4 09814 09873 09644 09753 0.9900 09920  0.9628  0.9768 0.9906 09928  0.9680  0.9799 0.9915 09871  0.9742  0.9805
5 6 09816 09875 09645 0.9754 0.9905  0.9923  0.9627 0.9769 09912 0.9932  0.9684 0.9803 0.9919  0.9937  0.9691 0.9809
8 09816 0.9874 0.9645 0.9754 0.9907 09923  0.9629 0.9771 0.9913  0.9926  0.9680  0.9798 0.9919 09881  0.9744 0.9811
10 0.9816 0.9878  0.9645 0.9756 0.9909 09924  0.9645 0.9779 0.9913 09934  0.9684  0.9804 0.9920  0.9885 09745 0.9813
2 0.9807 0.9866 09627  0.9740 0.9815 09875  0.9645 0.9755 0.9837 09885  0.9639  0.9756 0.9847 09865  0.9678  0.9767
4 09811 09873 09638 0.9750 0.9902 09933  0.9631 0.9776 0.9905  0.9925  0.9640  0.9777 0.9918  0.9937  0.9685  0.9806
7 6 09815 09874 09644 0.9754 0.9903 09925  0.9632 0.9773 0.9911  0.9928  0.9679  0.9798 0.9919  0.9937  0.9686  0.9807
8 09816 0.9874  0.9645 0.9754 0.9906 09927  0.9633  0.9775 0.9912  0.9901  0.9682 0.9787 0.9920  0.9886  0.9734  0.9808
10 09817  0.9879  0.9645 0.9757 0.9909 09931  0.9634 0.9777 0.9913  0.9903  0.9685  0.9790 0.9920  0.9885 09747 0.9814

A. Experiment Settings

1) Environmental Setup: The designed CNN-GRU model is
implemented using the Keras API' and the federated learning
framework is built by a lightweight Python framework Flask.?
Our experiments are conducted on a Ubuntu 18.04.3 LTS plat-
form with an Intel Xeon E5-2618L v3 CPU and an NVIDIA
GeForce RTX 2080TI GPU (64GB RAM).

2) Data Resource Description and Partitioning: We conduct
experiments on a real data resource of a gas pipelining system
(one significant example of industrial CPSs) [28]. In this data
resource, one class of network data under normal operations
and seven classes under various cyberattacks are, respectively,
collected. Each piece of network data in this data resource
contains 26 features and 1 label. In our experiments, the data
resource is divided into two major parts, i.e., 80% for training
and 20% for testing, and the training part is further divided into
even partitions to each industrial agent for local model training.
Note that all the trained deep learning models are tested on the
same testing data.

3) Baseline Studies: In this work, we compare the perfor-
mance of our proposed DeepFed scheme with some state-of-
the-art studies, where federated learning frameworks are also
used. Schneble et al. [26] proposed a single layer MLP-based
federated learning framework for attack detection in medical
CPSs. Also, Nguyen et al. [21] presented a three-hidden-layer
GRU-based federated self-learning system for intrusion detec-
tion in IoT networks. Further, Chen et al. [27] utilized a CNN-
based federated framework for data classifications, which is
composed of two convolutional layers, two max-pooling layers,
two fully connected layers, and one softmax layer. We fully
reproduce these deep learning models in our work and compare

IKeras: Python deep learning library (http:/keras.io/).
2Flask: Python web development framework (http:/flask.pocoo.org/).

the performance with our designed model under the proposed
federated learning framework.

4) Performance Metrics: Four common metrics are used to

evaluate the performance of the detection model as follows.

a) Accuracy: The results of the model to predict the correct
proportion.

b) Precision: The proportion of examples identified as cy-
berattacks that are indeed cyberattacks.

¢) Recall: The proportion of all cyberattacks examples cor-
rectly identified as exact types of cyberattacks.

d) F-score: The weighted average of precision and recall.
Note that, the macro averaged values are utilized to com-
prehensively evaluate the performance of all considered
intrusion detection models.

B. Performance Comparison with
State-of-the-Art Studies

We first conduct experiments to compare the performance
of our proposed DeepFed scheme with the abovementioned
baseline studies [21], [26], [27]. Three groups of experiments are
conducted, where different numbers of industrial agents K = 3,
5, and 7 are, respectively, considered.

Table I shows the numerical results about the performance of
federated intrusion detection models, in terms of the accuracy,
precision, recall, and F-score, under three different scenarios
with R =2, 4, 6, 8, and 10, respectively. It can be easily seen
that, the proposed intrusion detection model outperforms other
state-of-the-art studies on all metrics. As the number of com-
munication rounds R increases from 1 to 10, the performance
of each intrusion detection model generally improves, and grad-
ually stabilizes when R is sufficiently large. It’s worth noting
that, we can obtain an accuracy, precision, recall, F-score of
99.20%, 98.86%, 97.34%, and 98.08%, respectively, when K =
3, 99.20%, 98.85%, 97.45%, and 98.13% when K =5, and
99.20%, 98.85%, 97.47%, 98.14% when K = 7, respectively,
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Fig. 4. Comparison of the accuracy and F-score of considered intrusion detection models with varying communication rounds under three different

scenarios.(a) Accuracy versus R (K = 3). (b) Accuracy versus R (K = 5). (c) Accuracy versus R (K = 7). (d) F-score versus R (K = 3). (e) F-score

versus R (K =5). (f) F-score versus R (K = 7).
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with the communication round R = 10. Fig. 4 also visually
presents the numerical results of the accuracy and F-score of all
considered intrusion detection models with varying communi-
cation rounds, under K = 3,5, and 7, respectively. It is clear that
all intrusion detection models tend to converge after sufficient
rounds of communication with the cloud server. Importantly,
the proposed intrusion detection model has generally the best
performance over other baselines.

C. Performance Comparison With
Local and Ideal Models

In addition to the above experiments, we also carry out
experiments to evaluate the performance of each locally built
intrusion detection model using limited data resources as well

I A ccuracy [ Precision [ Recall [ F-score

The proposed
Intrusion detection model

(b)

Performance comparison of the local, ideal, and the proposed intrusion detection models under three different scenarios. (a) K

I A ccuracy [ Precision [ Recall [ F-score

0.99

Performance
4
©
®

=3
©
S

0.96

The proposed Ideal

Intrusion detection model

©

Ideal Local

3R

as the performance of an ideal model built by a central entity
using all the data resources. Fig. 5 shows the numerical results of
all four metrics under the abovementioned local, ideal, and the
proposed intrusion detection models, respectively, with varying
settings of K. As we can see, all the local intrusion detection
models perform unsatisfactorily compared with the proposed
model. Importantly, we also observe that the proposed model
produces sufficiently good performance compared with the ideal
model. It is, therefore, worth noting that the proposed model
would be wise to all industrial CPS owners due to its high
performance in intrusion detection and the ability to preserve
the privacy of their data resources.

Furthermore, we also evaluate the performance of the local,
ideal, and our proposed models in detecting various types of
cyber threats against industrial CPSs. The numerical results are
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TABLE Il
NUMERICAL RESULTS OF THE LOCAL, IDEAL, AND PROPOSED MODELS IN DETECTING VARIOUS TYPES OF CYBER THREATS (K = 5)

Type of cyber threats Local model The proposed DeepFed Ideal model

Precision Recall F-score Precision Recall F-score Precision Recall F-score
Naive malicious response injection attack 0.9909 0.9009 0.9438 0.9562 0.9476 0.9519 1.0000 0.9024 0.9487
Complex malicious response injection attack 0.9550 0.9838 0.9691 0.9904 0.9997 0.9950 0.9917 0.9997 0.9957
Malicious state command injection attack 0.9932 0.9359 0.9637 0.9932 0.9359 0.9637 0.9932 0.9359 0.9637
Malicious parameter command injection attack 0.9792 0.9856 0.9824 0.9792 0.9856 0.9824 0.9792 0.9856 0.9824
Malicious function command injection attack 1.0000 0.9478 0.9732 1.0000 0.9478 0.9732 1.0000 0.9478 0.9732
Denial-of-service attack 0.9955 0.9771 0.9862 0.9945 0.9864 0.9904 0.9945 0.9864 0.9904
Reconnaissance attack 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

summarized in Table II (taking K = 5 as an example). As can
be seen that the proposed intrusion detection model exhibits
excellent performance in terms of the precision, recall, and F-
score while detecting multiple types of cyber threats against
industrial CPSs, compared to a local model, and almost the same
performance compared to an ideal model.

VI. CONCLUSION

In this article, we proposed a federated deep learning scheme,
named DeepFed, for detecting and mitigating cyber threats
against industrial CPSs. First, we developed a novel federated
learning framework for multiple industrial CPSs, enabling the
collective building of a comprehensive intrusion detection model
in a privacy-preserving way. In addition, we created a novel
CNN-GRU-based intrusion detection model, which allows ef-
fective detection of various types of cyber threats against in-
dustrial CPSs. Further, a Paillier-based secure communication
protocol was designed for the federated learning framework,
which effectively preserves the security and privacy of model
parameters in the training process. Extensive experiments on a
real industrial CPS dataset demonstrated the high effectiveness
of the proposed DeepFed scheme as well as the superiorities
over state-of-the-art schemes.

It is worth noting that the proposed scheme builds a federated
intrusion detection model mainly for same-domain industrial
CPSs. Future research directions will focus on addressing cy-
bersecurity issues by federating data resources from different-
domain industrial CPSs.
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