
Towards Just-in-time Compilation of SQLQueries with OMR
JitBuilder

Debajyoti Datta
University of New Brunswick

Fredericton, Canada
debajyoti.datta@unb.ca

Mark Stoodley
IBM Canada

Markham, Canada
mstoodle@ca.ibm.com

Suprio Ray
University of New Brunswick

Fredericton, Canada
sray@unb.ca

ABSTRACT
The evaluation of SQL expressions and tuple materialization can
consume a significant portion of the overall execution time of a
query. The goal of our work is to generate efficient machine code
for scan, filter, join and group-by operations for a given SQL ex-
pression by Just-in-time (JIT) compilation using the OMR JitBuilder
compiler framework. Our approach creates a blend of specialized
code consisting of compile-time constants and JIT computation for
parts of the same SQL expression. The implementation is based on
a light-weight integration of JitBuilder into PostgreSQL 12.5, where
both the JIT compiled code and interpreted evaluation co-exist
for different opcodes in the same bytecode interpreter. We demon-
strate with our enhanced PostgreSQL 12.5 that our approach offers
improved query performance over purely interpreted execution.

1 INTRODUCTION
In recent years, the topic of query compilation has become promi-
nent, particularly for analytical workloads involving long running
queries. Query compilation can be more efficient than the tuple-
at-a-time processing model of Volcano-style [6] query execution.
This involves translating an SQL query into machine code using a
compiler framework, such as LLVM [10]. Recent research on query
compilation focused on aspects, such as compilation of execution
plans [11], and ameliorate the overhead of compilation time [8].
However, the integration of these techniques within a database
system requires significant effort to re-architect the query engine.
As a result, well-established database systems, such as PostgreSQL,
still do not support full-fledged compiled plan generation and exe-
cution. Hence, it may be easier to focus on incremental adoption
of query compilation techniques. We argue that SQL expression
and tuple materialization are “low-hanging fruits” as targets for
Just-in-time (JIT) compilation, as this does not require overhauling
the query engine completely, as demonstrated by Butterstein and
Grust [3]. However, this has not yet received much attention from
the research community.

Expressions are prevalent in SQL queries, which may appear
in different parts of a query, including, select clause, where
clause, invocation of aggregates, and grouping for group-by. We
profiled the execution of a TPC-H benchmark [1] query Q6, which

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CASCON 2021, November 22 - 26, 2021, Online/Virtual
© 2021 Association for Computing Machinery.

is shown in Figure 1. Our profiling provides ample evidence that
a significant percentage of PostgreSQL query execution time is
spent in the function ExecInterpExpr. A detailed discussion
regarding PostgreSQL expression evaluation and our findings are
presented in Section 2.1. The ExecInterpExpr function is re-
sponsible for SQL expression evaluation and tuple materialization
among other features. Therefore, the focus of this work is to try to
speed up SQL expression evaluation and tuple materialization to
gain runtime improvement in query execution by performing JIT
compilation of parts of the query where most of the execution time
is spent. This compilation process is relatively fast. JIT compilation
converts interpreted code into native code and removes the over-
head of interpretation, specializing code for constant arguments,
and reducing the number of branches and indirect jumps/calls.

In this paper we show the benefits of our approach with our
enhanced PostgreSQL. We adopt a non-invasive approach simi-
lar to that of Butterstein and Grust [3], which does not require
any change to PostgreSQL’s Volcano-style ‘interpreted’ processing
model of query execution. However, unlike their approach, we use
a novel compiler framework, OMR JitBuilder [5] to compile SQL ex-
pressions and tuple materialization (deformation). Our lightweight
JIT compilation approach takes advantage of JitBuilder’s support
for simple and flexible APIs for runtime code generation. We inte-
grate our JIT compilation approach within PostgreSQL version 12.5.
Our experimental evaluation involving TPC-H queries with three
scale factors show significant performance improvement over the
original (pure interpretation based) PostgreSQL execution.

2 QUERY PROCESSING IN POSTGRESQL
In this section, we describe how PostgreSQL processes an SQL
query and how expressions are evaluated.

2.1 PostgreSQL backend process
When PostgreSQL is launched, a background worker process is
created, which basically handles all queries issued by the connected
clients. This backend processing consists of five phases, as shown
in Figure 2. In the first phase, the parser generates a parse tree from
an SQL statement in plain text, which is then fed to the analyzer to
perform a semantic analysis of a parse tree and generate a query
tree. If the semantics of the incoming query is correct, the rewriter
checks for any SQL view statement and the specification of a view.
For this purpose the rewriter implements a rule system. In the third
phase, the planner generates a plan tree or query execution plan
from the query tree. In the fourth phase, the executor uses the plan
tree to process the query. In PostgreSQL the plan tree generated by
the planner is a collection of nodes, where each node consists of a
series of steps required to evaluate its implementation. Finally, the

CASCON 2021, November 22 - 26, 2021, Online/Virtual Debajyoti Datta, Mark Stoodley, and Suprio Ray

Figure 1: TPC-H Q6: profiled with perf (scale factor 4)

Figure 2: Query processing in PostgreSQL
executor executes the query as determined by the plan tree and the
result is returned to the client.

2.2 Expression evaluation in PostgreSQL
Figure 3 shows the TPC-H benchmark query Q6 and a breakdown of
the different operations that are part of the query plan. The query
consists of a conjunction of Boolean filters in the where clause
marked as 2 . Indicator 1 shows tuple materialization, whose pur-
pose is to extract the underlying tuples of the table in the in-memory
buffer pool after the corresponding pages have been retrieved from
disk. The tuples are stored in a representation, which is relatively
compact and the goal of tuple materialization is to convert this
into a form that can be accessed more efficiently and conveniently.
This enables the tuple attributes to be ready for operations such as
expression evaluation, aggregation or join. The 2 + 1 form the
sequential scan node consist of a PostgreSQL qual (qualification
conditions in a predicate) list and is initialized with a set of Boolean
and arithmetic expressions, which are evaluated using back-end
functions such as date_ge, float8le, int4lt, etc. During
evaluation, if a tuple qualifies the qual list, it can proceed to the
aggregation, which is the sum of multiplication of the attributes
extendedprice and discount.

Figure 3: TPC-H Q6

To determine the impact of SQL expression evaluation on the
overall query performance in PostgreSQL, we used the Linux tool
perf [2] to instrument and profile query Q6. Figure 1 shows a break-
down of the execution time for Q6. It is evident that (27.31 + 24.85)%
= 52.16% of the overall execution time is spent in the function
ExecInterpExpr and a further 11.25% of the time is spent in
heap_getsomeattrs. The function ExecInterpExpr lies at
the core of expression evaluation, whereasheap_getsomeattrs
performs tuple materialization. Hence, these two features together
consume a substantial (52.16 + 11.25)% = 63.41% of the query ex-
ecution time. Note the two variants of time consumption in the
Figure 1 for the same function ExecInterpExpr correspond to
different control flow paths within this function.

The characteristics of this distribution of execution time en-
courages us to take a deep dive into ExecInterpExpr revealing
PostgreSQL internals. A plan node in PostgreSQLmay contain an ex-
pression tree representing a target list, qualification conditions and
others. Each expression tree is represented by ExprState nodes.
To prepare to execute each expression tree, the tree is converted into
a linear sequence of opcodes, where each opcode represents a unit
of operation to be performed. These opcodes include fetching an
attribute, calling the backend implementation of operators and func-
tions, evaluating the qualification of a tuple, etc. There are a total of
90 opcodes in and for every ExprState node, the corresponding
opcode sequence is maintained in the ExprEvalStep array. Fi-
nally, the ExprState is prepared for interpreted execution where:
a) the interpreter is setup b) the function to be called for evaluat-
ing the current ExprState node (ExprState->evalfunc)
is set to ExecInterpExpr(), which is a computed goto based
interpreter. During interpreted execution, ExecInterpExpr()
iterates over the opcode sequence attached to an ExprState node
and executes the corresponding implementation for each opcode.

Figure 4 shows the different sequences of opcodes generated for
Q6, where the first two sets involve the most recurring sequences
and the last set is evaluated only once for Q6. It can also be seen that
there are 17 opcodes in a sequence to evaluate the predicate, which
is referred as phase P1. Step 0: EEOP_SCAN_FETCHSOME is used
to scan lineitem table to get the desired attributes, which is then
loaded to a transient variable in step 1 by implementing the opcode
EEOP_SCAN VAR. Next, in step 2: EEOP_FUNCEXPR_STRICT
is used to call the back-end function of the corresponding boolean
operator in the filter condition. For example, the back-end function
int4lt is used to evaluate the operator < in the filter condition
quantity < 40. Finally, in step 3 the opocode EEOP_QUAL
checks if the current filter condition was satisfied. Steps 1, 2, and

Towards Just-in-time Compilation of SQLQueries with OMR JitBuilder CASCON 2021, November 22 - 26, 2021, Online/Virtual

Figure 4: TPC-H Q6: opcode sequence in 3 phases

Figure 5: TPC-H Q6: explain analyze output

3 are repeated until all the qual list have been traversed and
if the conjunction of the filters is true, the rows are qualified to
be aggregated in phase P1. If a row satisfies the qual list, it is
projected to the next phase of ExprState, where the operation
extendedprice * discount is calculated and the result is
stored to the aggregation state represented by the data structure
AggStatePerGroupData. Finally, when all the tuples are eval-
uated, the third opcode sequence, phase P3, is used to store the
result into the resultslot field of ExprState.

Figure 5 shows the output of EXPLAIN ANALYZE for Q6. With
a scale factor 4, the lineitem table consists of 24 million rows.
Overall, expression evaluation and tuple materialization together
account for (27.31 + 24.85 + 11.25)% = 63.41% of the query execution
time. This is a significant portion of the overall execution time, and
is primarily due to repeated interpretation of the same code.

3 JITBUILDER COMPILER FRAMEWORK
JitBuilder is a library developed in the Eclipse OMR [4] project. It
was developed to simplify the tasks for a runtime system to incor-
porate a JIT compiler. JitBuilder provides a simple lifecycle API
initializeJit() and shutdownJit(), as well as a simple
descriptive API for the runtime system to describe what code needs
to be generated at runtime. With a few hundred to a few thousand
lines of code, a JIT compiler can be implemented that automati-
cally targets multiple platforms (including X86, POWER, IBM Z,
AArch64, and RISC-V).

We illustrate with an example to show how JitBuilder can be
used to dynamically generate a function that can multiply the
corresponding elements of two vectors together into a result vector.
First, we subclass JitBuilder’s MethodBuilder class and describe
the function parameters and return value type in the constructor
as shown in Figure 6. This function is given a name “multiply” and

using namespace OMR::JitBuilder;
class Multiply : public MethodBuilder {

Multiply::Multiply(TypeDictionary *types,
IlType *elementType)

: MethodBuilder(types, elementType)
, _T(types->PointerTo(elemType))
{

DefineName("multiply");
DefineParameter("rslt", _T);
DefineParameter("vec1", _T);
DefineParameter("vec2", _T);
DefineParameter("len", Int32);
DefineReturnType(type);

}
virtual bool buildIL();
protected:
IlType *_T;

};

Figure 6: Multiply example parameters and return type

bool Multiply::buildIL() {
IlValue *rslt = Load("rslt");
IlValue *vec1 = Load("vec1");
IlValue *vec2 = Load("vec2");
IlValue *len = Load("len");
IlValue *zero = ConstInt32(0);
IlValue *one = ConstInt32(1);

IlBuilder *lp = OrphanBuilder();
ForLoopUp("i", &lp, zero, len, one); {

IlValue *i, *v1, *v2, *prod;
i = lp->Load("i");
v1 = lp->ArrayLoadAt(_T, vec1, i);
v2 = lp->ArrayLoadAt(_T, vec2, i);
prod = lp->Mul(v1, v2);
lp->ArrayStoreAt(T, rslt, i, prod);

}
Return();
return true;

}

Figure 7: Slightly simplified Multiply::buildIL()
it takes four parameters: three pointers (one for the result vector
and two for the input vectors) to the vector element type (which
can be chosen dynamically as a parameter to the constructor) and
the last parameter specifies the length of each of the vectors. To
describe what the generated function should do when called, one
overrides the virtual MethodBuilder function buildIL, as
shown in Figure 7 in a slightly simplified form (ArrayLoadAt
and ArrayStoreAt each represent a sequence of two operations
to index into then to load or store an array element in JitBuilder).

The code in Figure 7 demonstrates a few key features of the Jit-
Builder API. First, JitBuilder uses IlBuilder objects to represent
the code paths needed in the generated code (a MethodBuilder
object itself corresponds to the compiled function’s entry point).
Another code path, representing the body of the loop that iter-
ates through the input vectors, is created via OrphanBuilder()
and used later as lp. Second, operations are described in order
as they should be executed in a code path. When the generated
code is called, for example, the rslt parameter will be loaded first,
then the vec1 parameter, then vec2, and so on. More complex
operations can also be added to the sequence, like IfThenElse
to introduce conditional code paths or ForLoopUp to iterate a
number of times over a set of operations (specified by a code path).
These more complex operations simplify the job of generating code
dynamically by taking care of the details required to implement a
for loop or to lay out the code for an if-then-else diamond. In this
example, the body of the for loop will load an element indexed by
i from vec1, then another element, also indexed by i from vec2.
It then multiplies them together using Mul, and finally stores the
product into the rslt vector, indexing by i. In this case, no more

CASCON 2021, November 22 - 26, 2021, Online/Virtual Debajyoti Datta, Mark Stoodley, and Suprio Ray

Figure 8: Compiling the ‘hot’ phases
complex operations are added to the loop body, but arbitrary com-
plexity can be achieved by creating more IlBuilder objects and
using additional operations like IfThenElse or ForLoopUp in-
side the loop. The final Return call will execute after the entire
ForLoopUp operation completes, causing the generated function
to return to its caller.

To compile the code described by the Multiply class, one
creates a Multiply object and calls compileMethodBuilder
on it to dynamically compile its code and provide an entry point
to that code, typically within a few milliseconds. That entry point
can then be called like a C function. Note that the base type of
the vector elements never appears directly in the buildIL()
code, so this one Multiply class can be used, analogous to how
C++ templates work in source code, to generate code at runtime
to handle whichever primitive vector type is needed simply by
creating differentMultiply objects and passing a specific element
type (like Double or Int32) to the constructor. One can also
write arbitrary conditional code directly into buildIL() so that
different code can be generated at will. For example, the buildIL
function can switch over the different byte code types of a language
runtime or runtime system so that it can generate code for a specific
sequence of those byte codes. JitBuilder also includes facilities, like
BytecodeBuilders and VirtualMachineOperandStack
specifically designed to help generate efficient compiled methods
for bytecode based runtimes. We use some of these facilities in our
framework to compile opcode sequences.

4 OUR APPROACH
Section 2 shows how different parts of a query in PostgreSQL are
bottlenecked due to CPU intensive code of comparatively smaller
size, which burns a large number of CPU cycles. As the code has to
be very generic to evaluate random SQL expressions on random ta-
bles, it often leads to large number of indirect jumps, unpredictable
branches and an oversized instruction set for a particular operation.
Compiling this bottleneck prone code at run-time would generate
native code by which a substantial amount of indirect jumps can
be removed. This can be achieved by identifying the compile-time
constants such as table schema information and directly evaluating
the branch at compile-time, which entirely removes the branch. An-
other way is to convert the indirect branches into direct branches.
For example, replacing the call to the SQL operator’s backend im-
plementation with a direct call to the compiled function.

We propose an iterative approach to adopt compilation-based
evaluation of SQL queries. Our implementation is non-invasive, as
it does not alter the computed goto-based expression evaluation
of PostgreSQL and in this way we formulate a hybridized model
consisting of both compilation and interpretation techniques by

utilizing run-time code specialization opportunities. Each of the
following sub-sections expands on our approach.

4.1 Type Synchronization
In order to execute the operations in an SQL query, it becomes
inevitable to translate the PostgreSQL specific data types to our
compiler framework. Our JitBuilder framework can only handle
primitive data types. For the data types that are not defined in the Jit-
Builder framework, but exist in PostgreSQL and are also needed for
some operations, Jitbuilder provides an elegant way to create new
data types that will be automatically translated by the compiler. To
synchronize these data types we create a HandleNewDataType
class, which inherits the TypeDictionary class of the OMR
compiler framework. In this class we define PostgreSQL specific
data types such as Datum, struct types such as FormData_pg
_attribute to hold the schema information, etc. In order to in-
timate the generated code about the new data types, we simply
create an object of the HandleNewDataType and pass it to the
MethodBuilder responsible for generating code.

4.2 Compiling the hot phases
In our approach, we compile the opcode sequence for each Expr-
State node and replace the pointer to the PostgreSQL interpreter
functionExecInterpExprwith an entry to the compiled opcode
sequence. To achieve it, a new functionEntryToCompiledExpr
is created, which when receiving a node compiles it if this was the
first call to the given ExprState node. Otherwise, the opcode
sequence must have been compiled and stored into a handle to
the compiled code as shown in Figure 8. The proposed compiled
evaluation utilizes JIT compilation-based on JitBuilder.

We take advantage of the code specialization afforded by Jit-
Builder. The development of our proposed system is dependent on
JitBuilder’s BytecodeBuilder objects and related C++ client
APIs to implement a while+switch based implementation to
evaluate the opcode sequences.We create oneBytecodeBuilder
object for each ExprEvalOp step, with that object responsible
for generating the code specific to that opcode. After the bytecode
objects are created, the process of walking through the bytecodes in
a proper order is initiated to inject the operations for each bytecode
handler into the MethodBuilder object using JitBuilder’s handy
BytecodeBuilder worklist.

JitBuilder is equipped with a variety of APIs that allow us to
performLoad() and Store() on primitives, variables, structs,
unions, etc. Building a JIT compiler for expression compilation
using JitBuilder involves the following steps: 1) define the compiled
method: by inheriting theMethodBuilder object of JitBuilder we
a) declare the name of the compiled method b) define each native
datatype of PostgreSQL to Iltype so that compiled code knows
the corresponding JitBuilder types and c) define the return type
of the compiled code, and finally 2) define logic that the compiled
code should follow by implementing the virtual function of the
MethodBuilder.

4.3 Specializing attribute access
Accessing the attributes is one of the most important parts of eval-
uating a query, which enables the tuple attributes to be ready for

Towards Just-in-time Compilation of SQLQueries with OMR JitBuilder CASCON 2021, November 22 - 26, 2021, Online/Virtual

Figure 9: Specializing the attribute access using loop-unroll

operations such as expression evaluation, aggregation or join. The
tuple attributes are stored inTupleDescData struct in the shared
buffers of the PostgreSQL application. This struct also contains the
schema information for a particular attribute such as the data type,
the size and offset. Every tuple has an array of attributes associated
with it, where each attribute is of type Form_pg_attribute
struct. In order to access the attributes, we need to traverse the
array using a proper offset value at any attribute. In the interpreted
evaluation the schema information is evaluated every time an at-
tribute is fetched. Since, schema information will be same for a
given table throughout the lifetime of the query execution, we can
evaluate the same at the compile-time only once thus avoiding
a large number of unnecessary branching, indirect calls and also
reducing the amount of information to be evaluated multiple times.
This approach lets us generate highly efficient code at run-time. Be-
cause evaluating code at compile-time reduces the amount of code
to be generated at run-time, which in turn helps reduce compilation
time. In Figure 9 the code marked in red can be easily computed
at compile-time, which is achieved by leveraging loop-unrolling
to evaluate the loop at compile-time as the number of attributes
represented by natts is constant to this code. Similarly, the off-
set is also computed at compile-time. In this way our approach
naturally extends to specialize the code by determining the type
and alignment of each attribute of a row from the schema during
compile-time. Based on this approach we can speed up the pro-
cess of calculating the offset needed to move to the next attribute
in a row which results in fast access to attributes as compared to
slot_getsomeattrs_int().

4.4 Compiling the backend functions
Since PostgreSQL is an object relational model-based system, it
defines an independent implementation for the SQL operators and
at the same time gives us the flexibility to add our own implementa-
tion for operators.We take this opportunity to compile the back-end
functions such as int4lt, date_gt, int4eq, etc., which are
used to evaluate operations: <, >, =, *, etc. In this way we are able
to replace a large number of indirect calls with a direct call to the
compiled function for the corresponding operator. We leverage
the concepts of Constant Propagation to specialize the code for
these functions. For example, in Figure 10 one of the arguments is
constant input to int4eq function. This argument can be treated
as a compile-time constant throughout the lifetime of the query
and can be directly evaluated during compile-time.

Figure 10: Specializing SQL operator implementation
Lpredicate:
Compare shipdate to -2191 (encoded 1994-01-01 value)

cmp qword ptr [r10+0x50], 0xfffffffffffff771
jge Label Lpass

gets here if predicate fails
set predicate result (eax) to 0

xor eax, eax
Store 0 to ExprState.resvalue

mov qword ptr [r8+0x8], 0x00000000
Leval_result:
test if result is zero or should continue

test eax, eax
jne Label Lcontinue

this predicate failed, update output, return
...
ret

Lpass:
gets here if row passes predicate
Store 1 to ExprState.resvalue

mov qword ptr [r8+0x8], 0x00000001
Store 0 to ExprState.resnull

mov byte ptr [r8+0x5], 0x00
set predicate result (eax) to 1

mov eax, 0x00000001
jmp Label Leval_result

Lcontinue: # evaluate more predicates...

Figure 11: Instructions for shipdate >= ’1994-01-01’
Our code specializations and refinements target the hot execu-

tion zones, such as ExecInterpExpr, which consumes more
than 60% of the time for e.g. Q6. To avoid any performance loss due
to the necessary compilation time, substantial effort is applied to
trace the frequently occurring opcode sequences and also sequences
that are less likely to occur. For instance, in Q6 the last sequence
occurs only once per query (see Figure 4), and hence this is left to
be evaluated by the interpreter. Thus, we formulate a hybrid model
consisting of both compilation and interpretation techniques.

4.5 Code generation illustration
Our implementation is based on an extended version of Post-

greSQL 12.5. This is enhanced with JIT compilation of SQL expres-
sion and tuple materialization using OMR JitBuilder. The JIT compi-
lation process generates specialized instruction sequences like that
for an example filter predicate shipdate >= ’1994-01-01’
shown in Figure 11. There are several improvements we can make
to this sequence to further reduce path length, but it already rep-
resents a significantly shorter instruction sequence than that the
interpreter executes to apply the same filter.

5 EVALUATION
The evaluation experiments are conducted on a machine with Intel
Xeon Gold 5120 processors, with a total of 56 physical cores, having
an aggregate memory of 128 GB RAM. The PostgreSQL version is
12.5 and the source code is compiled using g++ (version 7.5.0) with

CASCON 2021, November 22 - 26, 2021, Online/Virtual Debajyoti Datta, Mark Stoodley, and Suprio Ray

Figure 12: Execution time for interpreted vs. JIT compiled
(TPC-H Q1, Q3, Q6, Q14 scale factors 4, 8 and 16)

Figure 13: JIT compiled: execution time vs. compilation time
comparison (TPC-HQ1, Q3, Q6, Q14 scale factors 4, 8 and 16)

Figure 14: TPC-H Q6: profiled with perf after compilation
(scale factor 4)

-O3 flag. We use 4 queries from the TPC-H benchmark: Q1, Q3, Q6,
and Q14. These queries are evaluated for 3 dataset sizes (TPC-H
scale factors): 4, 8 and 16. Each query is run 12 times and we report
the average execution time of the last 10 query runs.

As shown in Figure 12, our approach performs better than the
interpreted execution in all cases. In Figure 13, we compare the ex-
ecution time with compilation time of our approach (JIT compiled).
In each case the compilation time is significantly small compared
to the execution time. For instance, the compilation time consti-
tutes 0.01% of the query latency (compilation + execution time) for
Q14 at scale factor 16. Hence, the compilation time overhead is not
substantial. Our profiling of Q6 (Figure 14) suggests that compil-
ing SQL expression and tuple materialization can speed up query
execution. In Q6 the amount of time spent in predicate evaluation
alone gained 13% speedup over interpreted execution, whereas a

descent speedup was also recorded for 1 and 3 with 2.3% and
1.5% respectively.

6 RELATEDWORK
Advances in hardware technology, leading to growing memory
capacity, have enabled main memory databases to be commercially
viable. As a result, in recent years query compilation has become an
active area of research. The primary focus of some of this research
has been the compilation of query execution plans. Query compila-
tion can address some of the limitations of classical iterator style
processing techniques [6] that can lead to poor performance, such
as the lack of data locality, frequent instruction miss-prediction,
and high branching. Krikellas et al. [9] proposed a template based
approach for code generation from SQL query plans. Neuman et
al. [11] proposed an approach to compile query plans into more
efficient machine code using LLVM compiler framework. A recent
work by Kersten et al. [7] focuses on minimizing compilation time.

Due to challenges associated with re-architecting query engines,
most of the commercial databases have yet to adopt full-fledged
compilation-based query execution. Consequently, an incremental
approach is preferable, in which a part of the query plan is adap-
tively compiled into machine code. To that end, SQL expression and
tuple materialization are ideal targets for compilation. The work
that is the most similar to ours is that of Butterstein et al. [3], which
uses LLVM framework. Unlike their work, we utilize a novel com-
piler framework, OMR JitBuilder [5], which is a light-weight JIT
framework and supports flexible APIs for runtime code generation.

7 CONCLUSION
We proposed an iterative approach to JIT compile SQL expression
and tuple materialization, which constitue a substantial part of
the overall query execution time. Our approach is a hybrid exe-
cution model consisting of both compilation and interpretation.
Our JIT compilation approach is based on OMR JitBuilder, and is
integrated within PostgreSQL 12.5. Experimenal evaluation with
TPC-H benchmarks demonstrate that our approach can yield sig-
nificant performance improvement over pure interpretation based
SQL query execution.

REFERENCES
[1] 2019. TPC-H benchmark specification 2.18.0_rc2.
[2] 2021. perf: Linux profiling with performance counters.
[3] Dennis Butterstein and Torsten Grust. 2016. Precision Performance Surgery for

PostgreSQL: LLVM—Based Expression Compilation, Just in Time. Proc. VLDB
Endow. 9, 13, 1517–1520.

[4] Eclipse OMR 2021. Eclipse OMR. https://github.com/eclipse/omr.
[5] Eclipse OMR JitBuilder 2021. JitBuilder release notes and code samples.

https://github.com/eclipse/omr/tree/master/jitbuilder/release.
[6] G. Graefe andW. J. McKenna. 1993. The Volcano optimizer generator: extensibility

and efficient search. In ICDE. 209–218.
[7] Timo Kersten, Viktor Leis, and Thomas Neumann. 2021. Tidy Tuples and Flying

Start: fast compilation and fast execution of relational queries in Umbra. The
VLDB Journal (jun 2021).

[8] A. Kohn, V. Leis, and T. Neumann. 2019. Making Compiling Query Engines
Practical. TKDE 33, 2 (2019), 597–612.

[9] Konstantinos Krikellas, Stratis Viglas, and Marcelo Cintra. 2010. Generating code
for holistic query evaluation. In ICDE. 613–624.

[10] LLVM [n.d.]. The LLVM Compiler Infrastructure. https://llvm.org/.
[11] Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans for Modern

Hardware. Proc. VLDB Endow. 4, 9 (June 2011), 539–550.

	Abstract
	1 Introduction
	2 Query Processing in PostgreSQL
	2.1 PostgreSQL backend process
	2.2 Expression evaluation in PostgreSQL

	3 JITBuilder Compiler Framework
	4 Our approach
	4.1 Type Synchronization
	4.2 Compiling the hot phases
	4.3 Specializing attribute access
	4.4 Compiling the backend functions
	4.5 Code generation illustration

	5 Evaluation
	6 Related Work
	7 Conclusion
	References

