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ABSTRACT

Location-based services (LBS) have become an ubiquitous technol-
ogy and spatio-temporal data generated by LBS is characterized by
high volume and velocity. In recent times several projects, such as
GeoSpark, SpatialSpark and LocationSpark, have focused on devel-
oping spatial data systems that take advantage of the distributed
in-memory data processing capability of Spark. However, most
of these systems assume immutable spatial data, and they do not
support high throughput location data updates that are common in
LBS. On the other hand, a few HBase-based systems, such as MD-
HBase, have been proposed that support data updates. However,
these systems do not take advantage of any distributed in-memory
query processing frameworks.

To address the challenges of high velocity location data, we
propose DISTIL, a distributed in-memory spatio-temporal data pro-
cessing system. Our system includes a distributed in-memory index
and storage infrastructure that are built on a distributed in-memory
programming paradigm called APGAS (Asynchronous Partitioned
Global Address Space). In our system, the location records are dis-
tributed across a cluster of nodes, using the producer-consumer
model. Our experimental evaluation demonstrates that DISTIL can
support high throughput location updates, and low latency concur-
rent processing of spatio-temporal range queries.
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1 INTRODUCTION

The growth of spatial data is accelerating and a significant por-
tion of spatial data is spatio-temporal in nature. A wide range
of Location-Based Services (LBS) applications, including location-
aware search, location-based games, advertising, and weather ser-
vices, have emerged. The key characteristics of LBS are: high rate
of location data updates, and many concurrent location-oriented
queries, such as range queries and k Nearest Neighbor (kNN) queries.

In response to the need to support scalable processing of spa-
tial data, a number of systems have been developed. Among these,
SpatialHadoop [4] and Hadoop-GIS [8] are based on the open-
source MapReduce framework, Hadoop [7]. Hadoop focuses on
fault-tolerance and I/O operations. Due to technological advances
in computing hardware, large main-memory machines with multi-
ple cores, and low-latency networking are becoming quite common
in modern data centers. These trends have made distributed in-
memory processing of big data attractive and the Spark [24] frame-
work very popular. Recently, several Spark-based spatial data pro-
cessing systems have been proposed. These include GeoSpark [23],
SIMBA [21], SpatialSpark [22], LocationSpark [19] and STARK [9].
However, according to a study [18], only STARK supports spatio-
temporal data. Moreover, none of these systems support a high
rate of updates, as most of the systems assume immutable spa-
tial data. As a result, these distributed in-memory spatial big data
frameworks are not suitable for LBS applications.

There have been a few distributed spatio-temporal data man-
agement systems that are designed for LBS. They are based on the
distributed NoSQL data store HBase [10]. MD-HBase [12] is among
the first in this category. Local and Clustering Index (LC-Index)
is a more recent entry in this series [5]. However, these systems
do not take the advantage of low latency distributed in-memory
processing, as Spark-based systems do.

Our goal is to support LBS applications, by offering high through-
put location updates and low latency distributed in-memory pro-
cessing of many concurrent queries. To this end, we considered a
few distributed in-memory frameworks and abstractions offered
by them. While Spark is very popular, researchers have reported
that [1] analytics applications developed with Spark can be an order
of magnitude slower compared to handwritten implementations
written with high performance language and tools. Spatial data
systems that are based on Spark also inherit its performance over-
head associated with scheduling, distributed coordination, and data
movement. We considered alternatives to Spark, including APGAS
(Asynchronous Partitioned Global Address Space) [16], which could
potentially offer better performance over Spark-based systems.

We propose a system called DISTIL (Distributed In-memory
Spatio-Temporal data system for Location-based services). Our
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system is developed with X10 [2], a language built upon the AP-
GAS model, that also supports failure-aware programming. It uti-
lizes a distributed in-memory array abstraction to store data in
the main memory of the available nodes in the cluster. We pro-
pose a distributed in-memory spatio-temporal index for efficient
multi-dimensional range query processing. To support high loca-
tion update throughput, each node utilizes a persistent Local store
based on LSM-tree [13]. To be able to tolerate node failure(s), the
data in the local store at each node is periodically uploaded into
and synchronized with a distributed persistent Global store, which
is based on HDFS [17]. In our approach, the spatial domain is par-
titioned into smaller equally-sized tiles. The insertion of location
data into the index and the local store happens at each node that is
responsible for a particular spatial region. The dataset and index
is split across the machines, but everything is under the same ad-
dress space using the APGAS programming model. This enables our
system to support parallel processing of location-oriented queries
by splitting a task among the workers, so that each machine can
independently operate on the data it hosts. The only need for inter-
node synchronization appears when gathering and aggregating the
query results.

Experimental evaluation of DISTIL demonstrates that our system
can achieve high update and query throughput. We also compared
the performance of our system against GeoSpark, as it is one of the
most active Spark-based projects. The average query latency with
DISTIL was an order of magnitude lower than GeoSpark.

To summarize, our contributions are as follows:

e We propose a scalable spatio-temporal big data system, called
DISTIL, that is based on the APGAS model.

e We propose a novel distributed in-memory spatio-temporal
index that supports efficient concurrent location-oriented queries.

e We conduct experiments to demonstrate the scalability and
efficiency of our system.

2 BACKGROUND AND RELATED WORK

Asynchronous Partitioned Global Address Space (APGAS).
APGAS is a distributed shared memory concurrency model that
allows multiple threads of execution to share a common address
space, distributed across a cluster of nodes. The global address space
is physically partitioned and shared among different entities.

X10 Programming Language. X10 [2] is an object-oriented,
statically typed and garbage-collected programming language based
on the APGAS model. X10’s managed runtime offers a distributed
heap that is appropriate for parallel and distributed computing.
Lightweight threads are spawned asynchronously or synchronously
and access objects on their local or remote heap. X10’s distributed
arrays can split data across multiple nodes, and a global reference
facilitates inter-node access. These features allow our system to
distribute data across multiple nodes, leverage inter-node and intra-
node concurrency, and manage synchronization.

Big Spatial Data Processing Systems. The need for high per-
formance spatial data processing has motivated many projects to
add support for spatial queries in existing distributed frameworks.
Among these, SpatialHadoop [4] and Hadoop-GIS [8] are based on
the MapReduce [3] framework. Another family of systems are based
on Spark, an in-memory cluster computing framework [24]. These
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Figure 1: System Architecture

systems include GeoSpark [23], SIMBA [21], SpatialSpark [22], and
LocationSpark [19]. Both families of systems are designed for spatial
queries, and do not normally support spatio-temporal queries.

Scalable Spatio-Temporal Indexes. Spatio-temporal data is
common in many LBS applications. Many systems have been devel-
oped to facilitate efficient queries and storage. MD-HBase [12] is
a multi-level index for multi-dimensional data that uses HBase. It
combines geographical and timestamp data into a single dimension
index using the Z-ordering linearization. The PASTIS [15] is an
in-memory index in which the spatial domain is split into grid cells.
It maintains information about moving objects using compressed
bitmaps. Inserts and updates are performed concurrently using
multiple threads. Fox et al. [6] developed a spatial-temporal index
on Apache Accumulo based on Niemeyer’s geohashing technique.
The location of a point is represented by a 35-bit hash that contains
the location and date-time information of that record. Local and
Clustering Index (LC-Index) [5] is an index built on HBase. The
records are stored in Index Files (IFile) at different region servers
that contain partitions of the table.

3 OURSYSTEM

In this section we describe our system architecture, index structure,
as well as, update and query processing schemes.

3.1 System Overview

The overall system architecture of DISTIL is shown in Figure 1. To
enable low latency data processing, it aggregates the main mem-
ory capacities of the nodes in a cluster using the APGAS model.
It follows a master-slave architecture, where the master node is
responsible for coordinating the various activities around the slaves.
It queues the records received from GPS-enabled mobile devices and
sensors. The Coordinator redirects the records to the Data updater
component in the slaves, based on the data placement. Managing
a location update involves first inserting it into the in-memory
and persistent stores, and then updating the in-memory index. The
index organization is described in Section 3.3.

When a location-oriented query is issued by a client, it is han-
dled by the Scheduler component. It generates the query plan and
distributes the plan fragments to the Query executor in each slave. It
also generates the final query result, by aggregating partial results
from each Query executor.

Location updates received from moving objects are stored in a
table, LTable. A unique record id (to populate the Recordld field) is
generated by our system upon receiving a new location record from
an object. The table is implemented as a distributed in-memory



store, (Memstore in Figure 1), and persisted in the stable storage
with persistent stores. To ensure that no location update is lost,
even in the event of node or disk failure, our system incorporates
two persistent stores: a fast Local store hosted at each node and
a Global store based on HDFS. Each node stores the location records
corresponding to the spatial partitions (described in Section 3.2) it
hosts. A new location record is serialized and is stored in the Local
store. To support fast insert operations, our implementation is based
on LSM-tree [13]. Data is transferred from the Local store to the
Global store by using an offline process, which runs periodically.

3.2 Data Partitioning

In order to manage data that is larger than a single node’s memory
capacity, it must be partitioned. In our system, the spatial domain is
organized as a grid by splitting it into equally-sized grid cells (tiles).
These tiles are distributed using a tile placement policy among the
nodes in a cluster. The master node stores information regarding
the location of the tiles with a hashtable that maps each tile (tileld)
to the node (nodeld) it belongs to.

We assume that each APGAS place corresponds to a physical
node in the cluster. Each place (including the place 0) hosts a subset
of tiles, as shown in Figure 2, and a hashtable maintains the mapping
between each tileld and the tile object. These hashtables are stored
in a distributed array whose index is the corresponding node id.

3.3 Distributed In-Memory Spatio-Temporal
Index

The main idea behind our index (Figure 2) is to discretize the spatial,
as well as the temporal dimension. Our index is composed of a
spatial index (SI) and a collection of partial temporal indexes (PTI).
We assume that there are N nodes such that each node is mapped to
an APGAS place, where place 0 is mapped to the master node. The
spatial domain is organized as a regular grid. Each grid cell (tile) is
mapped to a place and hence, a place (i.e. its corresponding node)
is responsible for a particular set of tiles and there is no need for
synchronization among different places while processing a query.
On system start-up, the tiles are assigned to the available nodes
following a placement policy.

Each tile maintains a PTI for a set of discrete time intervals, and
the interval length is a configurable parameter. Essentially, a PTI
identifies the activities of each moving object that was inside a grid
cell. Specifically, each PTI maintains an interval table. Each entry in
the interval table is a tuple consisting of a bit-vector and a hashtable
(RID-list map) that maps each moving object to a record id list. A
bit in the bit-vector is set to 1, if an object was inside the tile during
the corresponding time interval. Otherwise, the bit is set to 0. The
RID-list for an object contains the record id of each location update
that was inside a tile during that time interval. These record ids can
be used to retrieve the actual location record that is in the LTable.
The reason for keeping the record ids is to process tiles that are
partially covered by a query spatial window.

3.4 Update Processing

The update processing involves inserting a new record into the
in-memory and persistent stores, as well as updating the spatio-
temporal index. When a new location update is received from a
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Figure 2: Index structure

moving object, a corresponding location record object LRec is in-
serted into a concurrent queue by the Coordinator component in
Figure 1. Further processing is carried out using the producer-
consumer paradigm to enable parallel processing.

One of the producer activities retrieves a particular location
record from the queue and based on the coordinates of that record,
it determines the tile id tileld and the place pl where the record
needs to be inserted into. Each producer keeps a fixed size array,
arrayPerPlace for each place. When the size of that arrayPerPlace
reaches a specific threshold (insertBatchSize), it is sent to the node
as one item (record-batch), and placed in a queue. When a con-
sumer receives a record-batch item from the queue, it processes its
records by inserting the record into their in-memory table LTable
and persistent local store and then it updates the index.

3.5 Query Processing

We support spatio-temporal range queries (STRQ). The idea behind
parallel query processing of STRQ is to isolate the calculations to
the nodes containing the relevant tiles. For each relevant place a
query object is instantiated with the required parameters. These
query fragments are executed at each place using the related tiles.
Results are obtained and aggregated into a final result by the master
node, with no need for communication during the execution of the
place-specific queries.

4 EVALUATION

In this section we describe the evaluation of DISTIL.

4.1 Experimental Setup

We used datasets that are based on real-world spatio-temporal data.
The three datasets consist of 10, 20 and 40 million records that track
the location and movement of objects across time. The details of
these datasets are shown in Table 1. The dataset generation process
is described next. The polyline (edges) shapefiles of Texas from
the TIGER dataset [20] were fed into the mobility trace generator
MOTO [11] to generate the traces. We modified MOTO to generate
multiple trace files, each file for a different table fragment. Mo-
bility traces were generated for each object for 1000 timestamps
(equivalent to 1000 minutes).

The experiments were conducted on a cluster of 8 machines, each
having an Intel(R) Xeon(R) CPU E5472 @ 3.00GHz with 8 cores,
16GB RAM, and 500GB HDD running on Ubuntu 14.04 64-bit OS
with Oracle JDK 1.8.0_77 and the X10 2.6.0 compiler.



Table 1: Datasets

Dataset Name 10M | 20M | 40M
Number of objects
(thousands) 10 20 40
Numbe}r 9f records 10 - 40
(millions)
Size (MB) 454 | 907 | 1813

Table 2: Parameter settings
Parameter

Space domain Texas, 1251 km x 1183 km
Num. of road segments 56832846
Time duration, timestamps 1000
Insert workers 4

Settings
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Figure 3: Update throughput
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4.2 Update Performance

The update operation entails inserting a new record into the in-
memory and persistent stores, as well as updating the spatio-temporal
index. To evaluate the update performance of DISTIL, we used
4 insertion workers and a batch size of 6000 records. A multi-
dimensional range partitioning policy is used to partition the grid
cells and assign them to nodes. Figure 3 shows the insert throughput
achieved by DISTIL. As shown, the update throughput is over 178K
records/second with the 10M dataset and 136K records/second with
the 40M dataset. The throughput is an order of magnitude better
than that of a popular relational database DbX reported in [14].

4.3 Query Performance

Although DISTIL supports spatio-temporal range queries, GeoSpark
does not support temporal data. Therefore, to do a fair comparison
of DISTIL with GeoSpark, we evaluated spatio-temporal range
queries with all records (the entire time range) in the 3 datasets.
In Figure 4 we present the average query latencies for DISTIL and
GeoSpark, while executing a batch of 64 queries. DISTIL is an order
of magnitude faster than GeoSpark with these queries.

5 CONCLUSION AND FUTURE WORK

Due to the massive growth of spatio-temporal data, there is crucial
need to develop scalable data systems for LBS. Key requirements
of LBS are support for high location update (insertion) throughput
and many concurrent location-oriented queries.

We presented DISTIL, a distributed in-memory data processing
system for managing spatio-temporal data. Our system is based on
the APGAS model and implemented with the X10 language. DISTIL
can utilize the aggregate memory capacity of a cluster of machines.

Experimental evaluation demonstrates that DISTIL can support
scalable LBS with high insertion throughput. Moreover, query la-
tency is significantly lower with DISTIL than GeoSpark.

In future, we would like to explore different tile placement poli-
cies. We will also consider load-balancing algorithms to handle
data skew. Currently, our system supports spatio-temporal range
queries. Our plans for future work also include support for kNN
queries and inter-query parallelism.
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