
On Improving Data Skew Resilience In Main-memory Hash Joins

Puya Memarzia
Univeristy of New Brunswick

Fredericton, Canada
pmemarzi@unb.ca

Suprio Ray
Univeristy of New Brunswick

Fredericton, Canada
sray@unb.ca

Virendra C Bhavsar
Univeristy of New Brunswick

Fredericton, Canada
bhavsar@unb.ca

ABSTRACT
Main memory hash joins are an important category of in-memory
joins. However, the performance of these joins can be hindered
by dataset skew, shuling, and load balancing. We conducted a
comprehensive study on the efects of dataset skew on four hash
join algorithms. We show that hash joins are acutely afected by
dataset skew, and the performance gets worse with shuled data.
To address these issues, we propose non-partitioning hash joins
using two diferent hash tables. First, we use a separate chaining
hash table that is based on an existing implementation that we have
modiied. This version outperforms the original implementation
on skewed datasets by up to three orders of magnitude. Second,
we propose a novel hash table for hash joins, called Maple hash
table. We demonstrate that this hash table is better suited to skewed
and/or shuled datasets. Moreover, this approach further improves
performance by up to 17.3×.

CCS CONCEPTS

· Information systems → Data structures; Database query pro-

cessing; Join algorithms;

KEYWORDS

hash tables, in-memory joins, dataset skew, intra-query parallelism

ACM Reference format:

Puya Memarzia, Suprio Ray, and Virendra C Bhavsar. 2018. On Improving

Data Skew Resilience In Main-memory Hash Joins. In Proceedings of 22nd

International Database Engineering & Applications Symposium, Villa San

Giovanni, Italy, June 18ś20, 2018 (IDEAS 2018), 10 pages.

https://doi.org/10.1145/3216122.3216156

1 INTRODUCTION

Databases are one of the key technologies that power the informa-
tion age. In recent years, the need to store, retrieve, and process
data eiciently, has become vital in all spheres of human activities.
Furthermore, the variety of applications and problems that rely on
database performance has grown dramatically. The importance of
database eiciency and performance is greater than ever before.
Thus, database performance continues to be a hot research topic.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speciic permission
and/or a fee. Request permissions from permissions@acm.org.

IDEAS 2018, June 18ś20, 2018, Villa San Giovanni, Italy

© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-6527-7/18/06. . . $15.00
https://doi.org/10.1145/3216122.3216156

Joins are an important operation in many database systems. Hash
joins utilize hash tables to speed up the process. Main memory data-
base systems have long used hash joins to improve performance
[14]. Recent advances in data systems and computer hardware have
spurred further research in this area. As memory becomes cheaper
and denser, main-memory hash joins are increasingly prescribed
to speed up existing systems.

One of the key challenges facing database developers is how to
consistently achieve good performance. In their in-depth analysis
of in-memory hash join algorithms, Blanas et al. [8] acknowledged
the importance of data skew. They showed that a simple no parti-
tioning hash join algorithm can outperform other join algorithms.
However, they only considered a basic 1:N join case that involves
matching a primary key (unique and ordered) with a foreign key
from another table. Joins can involve non-key columns that do not
enforce uniqueness or any particular ordering.

Popular relational database benchmarks such as TPC-H [9] gen-
erally focus on querying data that is uniformly distributed and
non-skewed. However, it has been shown that these cases are not
necessarily representative of real-world applications [10, 18]. For
example, the size of cities and the length and frequency of words
can be modeled with Zipian distributions, and measurement errors
often follow Gaussian distributions [15]. Furthermore, skewed build
keys can be encountered as a result of parallel multi-way joins [7],
joins on non-primary key columns, and complex queries. It is quite
common to observe dataset skew in the output of a join operation,
and this result-set may need to be joined with several other in-
termediate results or tables. The performance impact of dataset
skew is frequently overlooked in favor of heavily optimizing other
aspects, such as the efects of cache and TLBs [20], NUMA charac-
teristics [23], architecture awareness [5, 8], memory-eiciency [6],
and transactional memory [28].

To demonstrate the acuteness of the data skew problem, we
conduct an experiment comparing the hash join performance of a
non-skewed dataset that is similar to that used in [8] and a skewed
dataset that we generated (build table skew is the only variable).
The experiment uses the hash join conigurations and code provided
by [8], which we describe in Section 2.2. We run the experiment on
a modern processor based on the Skylake architecture (for specii-
cations, see section 6.1). In Figure 1(a) the results show signiicant
performance hits on all hash join conigurations by nearly four
orders of magnitude, when the dataset is skewed. As we show in
section 4, this issue is caused by cache misses incurred from travers-
ing long pointer-linked chains of key-value pairs. Thus we illustrate
how dataset skew can severely hinder hash join performance if it
is not mitigated.

To further study the efect of data skew on hash joins, we propose
a set of sixteen datasets that vary in terms of distribution, skew,
and shuling. The details of these datasets are presented in Table 3.

https://doi.org/10.1145/3216122.3216156
https://doi.org/10.1145/3216122.3216156

IDEAS 2018, June 18–20, 2018, Villa San Giovanni, Italy Puya Memarzia, Suprio Ray, and Virendra C Bhavsar

To our knowledge, no prior work has used such a comprehensive
series of datasets to evaluate in-memory hash joins. We explore
diferent variants of dataset skew, vary the correlation between the
build and probe tables, and examine how the order of the keys can
afect the join algorithm.

Query optimizers generally rely on various statistics about the
tables to reliably predict the cost of diferent parts of a query. Choos-
ing the right tool for the job can be challenging. In typical real-world
applications, we cannot control how and where our data will be
skewed. To address the impact of dataset skew on hash joins, we
focus our attention on the design of the hash table.

Separate chaining hash tables remain one of the most popular
choices due to their ease of use and lexibility. They have been used
in many existing hash join implementations such as [4, 5, 8, 23, 28].
We demonstrate that the hash tables used in their implementations
are not ideal for joins on skewed datasets. In order to improve
performance, we modify the existing hash table (based on sepa-
rate chaining) from [8]. We show how this modiication results
in shorter chain length, simpler result materialization, and signif-
icantly improves total join time. We demonstrate an example of
this in Figure 1(b) The modiied hash table improves performance
by storing the values associated with each key in a contiguous in-
memory vector. This signiicantly reduces the number of lookups
required to ind a key because there are fewer elements in each
bucket chain (this is covered in detail in Section 4). The hash join
conigurations are covered in more detail in Section 2.2.

To further improve hash join performance, we propose Maple
hash table, a novel concurrent hash table based on cuckoo hashing.
Maple hash table uses a unique hashing technique to determine a
key’s destination table, bucket, and index within the bucket. This
multi-stage hashing approach reduces contention and collisions,
without increasing the number of required lookups. We show that
Maple Hash table outperforms a state-of-the-art concurrent hash
table implementation from Intel (see Section 5).

We demonstrate that non-partitioning hash joins based onMaple
hash table can signiicantly improve performance, particularly
when the data is not ordered. Join time is faster by up to 17.3×
in the best case, and slower by less than 0.2× in the worst case,
compared to partitioning hash joins using our improved separate
chaining hash table. This presents an opportunity for a query plan-
ner to choose a better hash join method and hash table, based on
the data characteristics.

To show the efectiveness of our approach on diferent proces-
sor architectures, we conduct experimental evaluations on three
distinct hardware platforms. The hardware details are presented
in Table 1. Our approaches achieve consistent performance gains,
without the need to manually tune the parameters for each hard-
ware architecture.

The key contributions of this paper are:

• We show how dataset skew can severely hinder hash join
performance if it is not mitigated.

• We design a series of datasets that extends the variety of
data distributions and relationships that are evaluated.

• We implement a modiied version of the hash table used by
Blanas et al. [8] that signiicantly improves join performance
with skewed datasets.

0
0
0
0
0
0
0
0
1

10
100

1,000
10,000

100,000
1,000,000

Nopart Part-Share Part-Indep Part-Radix

Ru
nt

im
e

(C
PU

 C
yc

le
s)

 -
lo

g 1
0

sc
al

e

Hash Join Configuration

Non-skewed Dataset Skewed Dataset
1014

1013

1012

1011

1010

109

108

107

106

105

104

103

102

101

1

(a) Highlighting the performance impact of dataset skew and shuf-
ling - Comparing a non-skewed ordered dataset and a Gaussian
skewed dataset

0
0
0
0
0
0
0
0
1

10
100

1,000
10,000

100,000
1,000,000

Nopart Part-Share Part-Indep Part-Radix

Ru
nt

im
e

(C
PU

 C
yc

le
s)

 -
lo

g 1
0

sc
al

e

Hash Join Configuration

SC (Original Implementation) SCVV (Modified Implementation)
1014

1013

1012

1011

1010

109

108

107

106

105

104

103

102

101

1

(b) Comparing separate chaining hash table (SC) from [8] against
our modiied version (SCVV) - our approach is over three orders of
magnitude faster on the skewed dataset (details in Section 4)

Figure 1: Experiments using hash join conigurations from

[8] - Skylake - 8 threads

• We present joins using Maple hash table, a novel hashing
technique based on cuckoo hashing that further improves
performance on shuled workloads.

The remainder of this paper is organized as follows. In Section 2
we discuss the related work. In Section 3 we describe the issues that
arise from skewed datasets. We present two solutions to solving
this problem in Sections 4 and 5. The experimental setup and results
are presented in Section 6. We conclude the paper in Section 7.

2 RELATED WORK

Research on main-memory hash joins has lourished in recent years.
Numerous publications have explored diferent algorithms, work-
loads, and architectures. In this section, we summarize recent works
on hash joins and hash tables.

2.1 Hash Joins

A key inspiration for our work is the in-depth analysis on main-
memory hash joins presented by Blanas et al. [8]. The authors
implement a family of hash join algorithms (summarized in Section
2.2), which we adopt for our work. Their experiments evaluate
datasets with skew on the probe relation. The results indicate that

On Improving Data Skew Resilience In Main-memory Hash Joins IDEAS 2018, June 18–20, 2018, Villa San Giovanni, Italy

a simple non-partitioned join algorithm using a separate chaining
hash table frequently outperforms other approaches, particularly
when probe skew is introduced.

Using the framework implemented by [8] as a base, Balkesen et
al. [5] make the case for ine-tuning radix hash join to the hardware.
The authors extensively analyze the performance of Radix and non-
partitioning in-memory hash joins, using workloads adapted from
[20] and [8]. Their results provide valuable insight on the role CPU
architecture plays in hash join performance. Ourwork also builds on
the framework from [8], but instead focuses on addressing dataset
skew on hardware-oblivious hash joins. Interestingly, the authors
predict that hardware advancements will eventually eliminate the
need for ine-tuning in the future.

In [6] Barber et al. present two new hash tables for in-memory
hash joins. The authors focus on improving hash join memory
eiciency. They note that their approach cannot handle M:N joins.

Shanbhag et al. [28] describe a hash join implementation that
uses hardware transactional memory and takes advantage of spatial
locality in the data. They also note the importance of evaluating
both ordered and shuled datasets.

2.2 Hash Join Conigurations

We employ the same hash join algorithms proposed by Blanas et al.
in [8]. These consist of one non-partitioning hash join and three
partitioning hash join variants. The following is a short description
for each hash join variant along with the shortened names used in
our charts.

(1) No partitioning join (Nopart): all threads create a shared
hash table from the build relation. This hash table is then
probed concurrently.

(2) Shared partitioning join (Part-Share): both relations are
divided into partitions shared by all threads. Locks are used
to facilitate concurrent access.

(3) Independent partitioning join (Part-Indep): all threads
participate in partitioning both relations, but the partitions
are private and cannot be accessed by other threads. Conse-
quently, locks are not needed.

(4) Radix partitioning join (Part-Radix): parallel Radix Join
with dynamic load balancing, as described by Kim et al. [20].
Each input relation is split into a hierarchy of partitions using
their least signiicant bits (LSB). The resulting partitions are
then joined using a hash table.

2.3 Hash Tables

There are many variants of hash tables, but not all hash tables
are suitable for hash joins. Cuckoo hashing was irst proposed by
Pagh et al. [26]. It guarantees constant lookup, update, and deletion
times, but insertion times are amortized. Kirsch et al. [21] use a
stash to store elements that could not be inserted normally. In
[22] Kumar et al. employ a hierarchy of hash tables to provide
deterministic insertions for cuckoo hashing. In [24], researchers
from Intel labs present a concurrent cuckoo hashing technique
which utilizes hardware transactional memory (HTM). The authors
leverage this hardware feature to implement atomic modiication
of shared data structures. In their experiments they show that this

approach outperforms Google’s dense_hash, Intel TBB, and C++
unordered_map.

These hash tables are not designed with hash joins in mind,
because the łinsertž operation typically overwrites existing values.
In a hash join, this may result in incomplete results.

3 THE IMPACT OF DATA SKEW

To support hash joins, the hash table implementation must be mod-
iied to support duplicate keys. In related work by Blanas et al. [8],
the authors used a hash table implementation based on separate
chaining, and presented an in-depth analysis on the impact of data
skew on hash join performance. However, this analysis was lim-
ited to data skew on the probe table. The authors concluded that
partitioning hash joins are less resilient to dataset skew. In order
to examine this problem further, we developed an extensive set of
datasets, and evaluated these datasets with the code provided by
[8]. We discovered that joins with highly skewed build relations
were signiicantly more time consuming than joins with similar
probe skew.

Separate chaining hash tables are used for a wide variety of
applications due to their simplicity and lexibility. The main concept
behind separate chaining is to store items in an array of buckets,
using a hash function (often a fast and simple solution such as
modulo) to determine the bucket number, and resolve collisions by
chaining items together. Separate chaining is often used for hash
join applications because insert operations are very fast (we do
not need to traverse the whole chain to add a new item), and the
insert operations do not fail as long as there is available memory. If
the input data is not skewed (as is the case in [8]), non-partitioned
hash joins with separate chaining generally perform well. However,
duplicate keys in the build table results in long chains of items
in the hash table, regardless of the hash function used. This can
signiicantly hinder performance. We irst observed this behavior
when testing the code from [8] with skewed datasets. Initially, we
solve this problem by modifying the hash table data structure and
data operations.

4 SEPARATE CHAININGWITH
VALUE-VECTORS (SCVV)

As we discussed in the previous section, dataset skew can pose a
signiicant obstacle for hash join performance. We initially address
this issue by modifying the separate chaining hash table from [8]
to store/read multiple values per key in contiguous value vectors.
This simple solution is very efective against dataset skew and can
also be extended to other data structures.

Figure 2 depicts an example comparing our modiied separate
chaining hash table to the original version. Consider a chained
hash table with 10 buckets and a modulo hash function. During the
hash join probe phase, we query key 7. We have to traverse all ive
elements in the chain to look for matching keys. In the modiied
version with value vectors, we ind a match on the irst lookup,
and we ind all other values by traversing the value vector. In this
example, inding all the matches for key 7 will take 2 reads, versus
5 reads in the original version. This issue does not depend on the
hash function. As we show in the experiments, the overall impact
on join time can be very severe.

IDEAS 2018, June 18–20, 2018, Villa San Giovanni, Italy Puya Memarzia, Suprio Ray, and Virendra C Bhavsar

7 12

215

Separate Chaining

Separate Chaining with Value Vectors

17 70 17 70 17 2 7 15

7 12 17 70

Key Value

Value
Vector

70

Key

Figure 2: Example: Comparison of a bucket chain with and

without value vectors (modulo hash function).

4.1 Lookup and materialization costs

We do an analysis on separate chaining lookup costs to provide
some intuition on how SCVV can improve performance. Let’s as-
sume K keys have been inserted into the hash table. The worst case
scenario occurs when all the keys end up in the same bucket. In
this situation, we have to perform K lookups for K keys in the build
table for every key that exists in the probe table.

In order to simplify this analysis, we focus on what happens
while probing the keys in a bucket chain. In the case of regular
separate chaining, we have to check every single key in the bucket,
because we cannot guarantee that another matching key does not
exist in the bucket.

With a separate chaining hash table (SC), if a bucket has K keys,
the number of key lookups needed until we ind a match is as
follows: CSC = K .

In a modiied separate chaining hash table with value vectors

(SCVV), we only need to traverse the chain until we ind a match.
For a bucket with K chained unique keys, the average number of
lookups is half the number of lookups required by basic separate

chaining: CSCVV _unique =
K
2 .

However, when the keys contain duplicates due to dataset skew,
the maximum chain length is determined by the number of unique
keys that hash to a bucket. If we assume that D is the average

degree of key duplication, the lookup cost is calculated as K
D∗2

and by factoring in the average cost of reading the value vector
once we have found a match, we get the cost of materialization:

CSCVV _skewed =
K
D∗2 + D.

In conclusion, value vectors reduce the number of key lookups
needed, and once we ind a matching key, we can stop traversing
the chain, and output all the resulting tuples. Henceforth, we use
SCVV as our new baseline.

4.2 Evaluation and Overhead

We compare the original implementation by Blanas et al. [8] with
our modiied version using value vectors. In order to provide an
łapples-to-applesž comparison, we only modify the hash table used,
and leave the rest of the code unchanged for this experiment. A
performance comparison of hash joins using SCVV and the original
hash table implementation (SC) with skewed datasets is shown
in Figure 1(b). Our approach is several orders of magnitude faster
than the original code when the dataset is skewed (up to 5726×
faster). As discussed in Section 4.1, SCVV produces shorter chains
compared to SC. This signiicantly lowers the number of lookups
for both the build and probe phases.

We have demonstrated that SCVV is faster than SC on skewed
datasets, but what about datasets that are not skewed at all? The
main advantage of using a value vector is to store and retrieve
multiple values per key. When there are no repeating keys in the

dataset, that advantage is lost, and the size of the hash function
modulus becomes an important factor. Furthermore, despite the
specialized nature of the value vector, it bears additional overhead
compared to a much simpler value variable. SCVV incurs a perfor-
mance penalty of 16% when the build table keys are unique and
fully ordered (a sequence of the numbers 1 to N). As a result, we
would still choose SC in such rare cases. We have designed a new
baseline implementation that can handle skewed datasets, and our
next goal is to tackle shuled (non-ordered) datasets.

5 MAPLE HASH TABLE (MH)

As part of our research on hash tables for hash joins, we explored
the possibility of using cuckoo hashing for this purpose. As we
mentioned in Section 2, cuckoo hashing was originally proposed by
Pagh et al. [26]. Its core concept is to store items in one of two tables,
each with a corresponding hash function (this can be extended to
N tables). If a bucket is occupied by another item, the existing item
is displaced and reinserted into the other table. This process con-
tinues until all items stabilize, or an arbitrary threshold is crossed.
Cuckoo hashing provides a guarantee that reads take no more than
two lookups. Its main drawback is relatively slower and less pre-
dictable insert operations, a lack of concurrency, and the possibility
of failed insertions. Consequently, several variants of cuckoo hash-
ing have been proposed to resolve these drawbacks. A concurrent
hash table based on cuckoo hashing was proposed by Intel in [24]
(henceforth called łIntel Libcuckoož). It supports high-performance
concurrent operations with multiple readers and writers. By lever-
aging hardware transactional memory (HTM) introduced in Intel’s
new Haswell chipset, as well as several carefully engineered opti-
mizations, it achieves the best insert performance amongst all hash
tables. However, the availability of special hardware features such
as HTM cannot be taken for granted. Furthermore, the performance
of Intel Libcuckoo sufers signiicantly when the distribution of
the dataset is skewed. In their experimental evaluation [24] Intel
Libcuckoo used a uniform distribution of keys. As we know, real
world datasets may be non-uniform or skewed [17].

We introduce Maple hash table, a novel extension to the bucke-
tized cuckoo hash table approach that is designed for concurrency,
and insert eiciency. In our approach, we use a fast multi-stage
hashing technique to determine an incoming item’s location, efec-
tive load-balancing to decrease collisions and lock contention, a
semi-optimistic locking strategy that acquires fewer locks without
incurring race conditions, and optimizations to improve concur-
rency and cache usage.

In the next section (Section 5.1) we describe the Maple hash
table data structure. We then elaborate on the hash functions in
Section 5.2. Finally, we describe how the hash table functions and
concurrency control are implemented in Section 5.3.

5.1 Data Structures

Figure 3 depicts a general overview of our cuckoo hash table. The
hash table uses 4-way set-associative buckets, which are imple-
mented as contiguous arrays of key-value pairs. Other conigura-
tions are possible but 4-way provides a nice balance of performance
and memory usage, while also ensuring cache alignment. As we
show in Subsection 5.2, an element can be found without reading
through the whole bucket.

On Improving Data Skew Resilience In Main-memory Hash Joins IDEAS 2018, June 18–20, 2018, Villa San Giovanni, Italy

...

Bucket 0 KVP Array

Bucket 1

0 1 2 3

KVP Array 0 1 2 3

Index No

Bucket n KVP Array 0 1 2 3

Table 0

Bucket
No

K3 VV3

Table No

Figure 3: Maple Hash Table Data Structure - a key is found

without the need to probe all the elements in the bucket

Key

Value

Hash
Function

246422

5509

Hash Value

Key-Value
Pair

Bitwise AND
(table size - 1)

Index Number

49611364

Bucket Number

678

3
Index Function

Initial Table
Number

0
Table Selector (Bitwise AND 1)

Figure 4: Example of inding a location for a key usingmulti-

stage hashing to determine table, bucket, and array index

The combination of the table, bucket, and index numbers gives
us the precise location of a key-value pair. For each key, there are
only two possible valid locations within the table. That means that
unlike other methods that combine cuckoo hashing with linear
probing, such as [24], we can retrieve a key-value pair by looking
up a maximum of two slots as opposed to 2N (where N is the
number of slots per bucket). This feature further reduces the cost
of lookups in buckets that are larger than the cacheline, as parts
of the bucket that cannot contain the key are skipped. When the
table is irst created, all keys and values are initialized to zero. We
reserve zero to indicate that a key-value pair is empty or deleted.

5.2 Hash Functions

A good hash function strikes a balance between computational
complexity and its efectiveness at reducing collisions. As noted
in [27] and [1], Murmur hashing is widely used due to its speed
and acceptable hash value quality in most situations. Our own
experiments with a wide variety of hash functions conirm that
Murmur is a suitable choice. However, in some test cases (skewed
datasets) its performance was not satisfactory. Due to this, we
implemented a multi-stage hashing approach that is efective and
computationally cheap. Figure 4 depicts an example of how each
index is computed.

An incoming key is passed through the hash function to produce
the hash value. To determine the bucket number, we calculate the
modulo of the hash value to the table size. Since the table size is
a power of two, we calculate this much faster by using the well-
known technique of replacing the modulo with a bitwise AND
operation. A function called the indexgen is used to determine the
index within that bucket. In practice, this approach works well

when the indexgen function can be computed much faster than the
hash function.

Algorithm 1:Maple hash table insert algorithm

Data: newKVP is the key-value pair being inserted
Result: Return true if successful, otherwise false (rehash)

1 if ind(KVP) then append(KVP);

2 else

3 stepcounter← 0 ;

4 maxsteps← log(tablesize);

5 tableno← newKVP.key bitwise & 1;

6 while stepcounter < maxsteps do

7 switch tableno do

8 case 0 do

9 hashval← hash1(newKVP.key);

10 bucketno← hashval & (tablesize - 1); index←

indexgen(hashval);

11 lock lockarray[bucketno];

12 if table0[bucketno][index] is empty then insert

newKVP in table0;

13 unlock lockarray[bucketno];

14 return true;

15 else

16 if key exists then append(newKVP) and

return true;

17 evict existing KVP as oldKVP and insert

newKVP;

18 unlock lockarray[bucketno];

19 Set newKVP←oldKVP;

20 tableno← 1;

21 case 1 do

22 (Repeat case 0 steps for table 1)

23 increment stepcounter by 1;

24 return false;

5.3 Concurrent Implementation

Cuckoo hashing is relatively easy to implement in serial appli-
cations. However, the original design by Pagh et al. [26] did not
propose an eicient parallel design. Instead, the authors propose
calculating two hash values in parallel. This approach does not scale
well on modern processors, which generally have over 4 cores.

Our implementation leverages data parallelism to scale up on
multicore processors. As noted in [16], there is no stable hierarchy
between locks, and variables such as workload, available resources,
and hardware speciications, need to be taken into account. For
concurrency control, we opt to use light-weight spinlocks on a
per-bucket granularity.

To ensure consistency, all threads must inish building the hash
table before it can be probed for matching keys. This allows us to
employ a locking strategy that is less stringent, as concurrent read
and write operations are not required. Our semi-optimistic locking
strategy reduces lock acquisition and contention.

A listing of our insert algorithm is depicted in Algorithm 1. If
a key already exists in the hash table, the value of the incoming
key-value pair is appended instead. Our preliminary experiments

IDEAS 2018, June 18–20, 2018, Villa San Giovanni, Italy Puya Memarzia, Suprio Ray, and Virendra C Bhavsar

0

5

10

15

20

25

30

35

40

45

50

16M 33M 67M

M
ill

io
n

w
rit

e
op

s
/ s

Dataset Size

Maple Hash
Intel Libcuckoo

(a) Insert throughput

0

20

40

60

80

100

120

16M 33M 67M
M

ill
io

n
re

ad
 o

ps
 /

s

Dataset Size

Maple Hash
Intel Libcuckoo

(b) Read throughput

Figure 5: Comparing Maple hash table and Intel Libcuckoo -

uniform dataset - Skylake - 8 threads

revealed that having all threads begin inserts from one table could
result in uneven load distribution and higher lock contention. The
table selector selects the initial table to insert a new item, based
on the key’s least signiicant bit. We use the least signiicant bit
because it is fast and efective. In a worst case scenario (all keys
are odd or even), the algorithm behaves like most cuckoo hashing
approaches that start insertions from the same table. It is possible
to further randomize this approach, but we found it to be adequate.

Rather than locking every bucket along the cuckoo path, we
lock the bucket that will be modiied. To ensure consistency, the
algorithm checks for race conditions before modifying an item.
Successfully inserting a new item into the hash table will store that
item in only one of two possible locations. This ensures good read
performance when probing the table for matches.

5.4 Performance Evaluation

We compare the performance of Maple hash table against the state-
of-the-art concurrent hash table, Intel Libcuckoo. The datasets con-
sist of 16M, 33M and 67M random records generated from a uniform
distribution. Figures 5(a) and 5(b) depict multi-threaded insert and
read throughput respectively. Our results show that Maple hash
table is modestly faster than Intel Libcuckoo by up to 17%.

6 EVALUATION

We now evaluate the efectiveness of the hash join approaches
with our hash tables. Our experiments build on the same code base
as [8], which was also adopted by [4]. Our contributions include
implementing and integrating the SCVV and MH hash tables into
the benchmark and investigating their performance on a broad
range of datasets.

It was shown in previous work that hardware architecture can
play an intricate role in hash join performance [5]. Inspired by
this work, we evaluate our experiments on three diferent hard-
ware architectures. For convenience, we summarize the hash join
conigurations in Table 2.

We present the platform speciications of each machine in the
next section (Section 6.1), and describe the characteristics of our
synthetic datasets in Section 6.2.

6.1 Platform Speciications

We evaluate the experiments on three diferent processor archi-
tectures: Intel Skylake, Intel Harpertown (based on the Penryn

Table 1: Experimental setup speciications

CPU Cache RAM TLB (4KB pages)

Intel Core i7

6700HQ (Skylake)

1MB L2

6MB L3

16GB

DDR4

L1 DTLB: 64 entires

L2 STLB: 1536 entires

Intel Xeon

E5472 (Harpertown)

12MB L2

No L3

16GB

DDR2

L1 DTLB: 16 entries

L2 DTLB: 256 entries

AMD Opteron

8220 (K8)

2MB L2

1MB L3

128GB

DDR2

L1 TLB: 32 entries

L2 TLB: 512 entries

Table 2: Hash Join Coniguration Key

Short Form Hash Join Variant Hash Table

Nopart_SCVV No partitioning SCVV

Nopart_MH No partitioning Maple

Part-Share_SCVV Shared partitions SCVV

Part-Indep_SCVV Independent partitions SCVV

Part-Radix_SCVV Radix partitioning join SCVV

architecture), and AMD K8. Our intention is to ensure that the re-
sults are reproducible and not tuned for a particular set of hardware.
The Harpertown and AMD machines run Ubuntu 14.04 LTS, and
the Skylake machine uses Ubuntu 16.04 LTS. To ensure consistency
in code compilation, we conigure all machines to use version 6.3.0
of the G++ compiler, and enable the -O3 optimization lag.

The irst machine contains an Intel Skylake quad core processor
with hyper-threading, 16GB of RAM, and a 500GB SSD. The CPU
contains 256KB of L2 cache per core, and 6MB of L3 cache that is
shared by all cores. The next machine uses an Intel Harpertown
(based on the Penryn architecture) quad core, and 16GB of DDR2
RAM. Each pair of cores has access to 6MB of L2 cache. Lastly, we
test an AMD machine with eight K8 CPUs combined with 128GB
of RAM. The hardware speciications are summarized in Table 1.

6.2 Datasets

In [8], the authors use dataset cardinalities of 16M and 256M tu-
ples to mimic common decision support settings (1:16). Subsequent
works by other authors have adopted this workload [4, 5, 28]. We
adopt this cardinality as the baseline for our datasets. We exten-
sively expand the range of datasets to include distributions not
covered by prior work, noting that even popular benchmarks such
as TPC-H are not representative of all real-world workloads [10, 18].

In most databases, the primary key is automatically generated
in ascending order. However, there is no guarantee that the join
keys will be ordered and/or uniformly distributed. Although some
recent works examine dataset skew on the probe relation, to our
knowledge none of the literature explore such an extensive set of
datasets on main-memory hash joins. Another aspect to consider
is the way the keys are ordered. Prior work by Shanbhag et al. [28]
highlights the importance of studying dataset shuling.

Table 3 provides details on how the datasets are designed. All
build tables contain 16M records, and the probe table size depends
on the correlation. For each dataset, we also generate a shuled

version that is reordered using a uniform random function. The
datasets are otherwise denoted as ordered. It is worth noting that
if the build keys are drawn from a skewed distribution (Zipf or
Gaussian), they will not be in sorted order. However, on ordered
datasets the correlating keys in the probe table will follow the same
order as the build table, resulting in better data locality.

On Improving Data Skew Resilience In Main-memory Hash Joins IDEAS 2018, June 18–20, 2018, Villa San Giovanni, Italy

Table 3: Dataset details

Dataset Name Build Key Generation Build to Probe Key Correlation Parameters

Sequential 1:N sequential unique keys keys have exactly N matches in probe table N=16, key range 1 to 16M

Random near 1:N randomly repeating sequence keys have exactly N matches in probe table N=16, uniform random between 1 and 5

Gaussian 1:N sequential unique keys relationship follows a Gaussian distribution mean=0.015, stdev=0.3, multi=10

Gaussian M:N Gaussian skewed keys relationship follows a Gaussian distribution mean=0.015, stdev=0.6, multi=10000

Gaussian near M:K Gaussian skewed keys Random K matches where 1 < K < N N=16, mean=0.015, stdev=0.6, multi=10000

Zipf 1:N sequential unique keys relationship follows a Zipf distribution Zipf skew=2.0, size=16M

Zipf M:N Zipf skewed keys relationship follows a Zipf distribution Zipf skew=2.0, size=16M

Zipf near M:K Zipf skewed keys Random K matches where 1 < K < N N=16, Zipf skew=2.0, size=16M

6.3 Results and Discussion

We conduct comprehensive experiments to analyze how dataset
skew and data shuling afect hash join performance. These datasets
are designed to focus on the efects that we are interested in study-
ing. To this end, we process each of the datasets with the hash
join conigurations mentioned in Section 2.2. The join operation
concludes when the resulting tuples have been written to memory.
As our main focus is in-memory performance, we omit the inal
step of writing the result to the disk. This is consistent in all the
experiments to ensure łapples-to-applesž comparisons.

We present our performance evaluations in Subsections 6.4 to
6.7. In each subsection, we focus on one parameter (such as build
skew), and keep all other parameters constant. Throughout the
results we refer to non-partitioning join using the Maple hash table
as MH, and Separate Chaining with Value Vectors as SCVV. Finally,
we examine how CPU architecture can afect the results in Section
6.7. We measure the CPU cycles for each hash join phase, using the
timers from [8]. These timers measure CPU cycles, allowing results
from diferent datasets can be compared.

6.4 Build Table Skew

We start of by investigating how build skew afects performance.
We evaluate four diferent variations of build table skew, while
maintaining the 1:16 probe cardinality used in prior work [8].

In Figure 6 we present the average runtimes for each ordered
dataset, and in Figure 7 we present the results for the shuled
versions of these datasets. The charts are arranged in order of
increasing build skew, from left to right. We now examine the
behavior of each dataset in this category.

6.4.1 Sequential 1:N dataset. A basic scenario is to consider a
build table with unique sequential keys. We note that no parti-
tioning with SCVV is the fastest coniguration when the dataset is
ordered, and that MH outperforms all other conigurations when
the dataset is shuled. This is a trend that we frequently observe
throughout our experiments. We take a closer look at the efect
of shuling in Section 6.6. Overall, the non-partitioning hash join
conigurations provide the fastest runtimes.

6.4.2 Random near 1:N dataset. This dataset contains mildly
skewed build keys. This is achieved by randomly repeating sequen-
tial keys between 1 and N times until 16M records are created. This
is the only example in all our experiments where Radix hash join
outperforms all other conigurations. When the keys are ordered,
MH and SCVV ofer very similar performance and are the fastest
conigurations, and Part-Radix is the worst coniguration. When
the keys are shuled, all conigurations take a performance hit,

but Part-Radix ends up as the fastest coniguration followed by
MH. Previous studies have noted that Radix join is prone to load
imbalance [8], and shuling may partially alleviate this.

6.4.3 Gaussian M:N dataset. For this dataset, the build keys
approximate a half-normal Gaussian distribution with a standard
deviation of 6000. The keys cover a broader range of numbers and
frequencies, compared to the Zipf skewed keys. The data locality in
the probe table is lost when the keys are shuled. The results show
that SCVV provides the fastest runtimes, followed by MH. The
ordered results follow the same trend as the sequential 1:N dataset.
When the dataset is shuled, all conigurations take longer to com-
plete the join. The Part-Indep coniguration sufers the greatest
slowdown during the partitioning phase.

To understand why this happens, consider that Part-Indep cre-
ates per-thread partitions. This eliminates the overhead of synchro-
nization, but also results in a much larger total number of partitions
that may no longer it in the cache and TLB. These private partitions
are then merged after the partition phase. These characteristics de-
lay the availability of data. The shuled dataset further increases
the number of partitions created per thread, which magniies the
problem.

6.4.4 Zipf M:N dataset. In order to study a case of extreme data
skew on the build table, we use a Zipf distribution with a high
skew parameter of s= 2.00. The runtime results show the Part-Share
coniguration performing worst by a considerable margin. If we
look at the join breakdown by phase, we see that the partition
phase is the main bottleneck. The Part-Share coniguration creates
partitions that are shared among all threads and protects concurrent
inserts using a latch. This particular Zipf distribution contains
keys that cover a relatively narrow range of values. Consequently,
most keys belong to the same partition. This results in high lock
contention and serialization of the partitioning phase, as all threads
will try to insert into the same partition. The same trend is observed
after shuling the data because the keys will be inserted into the
same shared partition regardless of how they are distributed. Other
conigurations such as MH and SCVV ofer iner lock granularity or
avoid locks altogether in the case of Part-Indep. We can conclude
from this that the Part-Share coniguration is unsuitable when the
majority of build keys occupy a narrow range of numbers.

6.5 Probe Table Skew

We now examine probe table skew. In these experiments, we keep
the build skew constant, and vary the probe skew. We examine a
total of four diferent probe skew distributions, that are divided
into two categories in order to keep the build skew constant when
comparing the results.

IDEAS 2018, June 18–20, 2018, Villa San Giovanni, Italy Puya Memarzia, Suprio Ray, and Virendra C Bhavsar

0
2
4
6
8

10
12
14
16
18

R
un

tim
e

(C
PU

 C
yc

le
s)

B
ill

io
ns

Configuration

Part Build Probe

(a) Sequential - 1:N

0

2

4

6

8

10

12

14

R
un

tim
e

(C
PU

 C
yc

le
s)

B
ill

io
ns

Configuration

Part Build Probe

(b) Random - near 1:N

0

2

4

6

8

10

12

R
un

tim
e

(C
PU

 C
yc

le
s)

B
ill

io
ns

Configuration

Part Build Probe

(c) Gaussian - M:N

0
20
40
60
80

100
120
140
160

R
un

tim
e

(C
PU

 C
yc

le
s)

B
ill

io
ns

Configuration

Part Build Probe

(d) Zipf - M:N

Figure 6: Hash Join run time with Variable Build Skew on Ordered Datasets - Skylake - 8 threads

0
10
20
30
40
50
60
70
80

R
un

tim
e

(C
PU

 C
yc

le
s)

B
ill

io
ns

Configuration

Part Build Probe

(a) Sequential - 1:N

0

10

20

30

40

50

60

70

R
un

tim
e

(C
PU

 C
yc

le
s)

B
ill

io
ns

Configuration

Part Build Probe

(b) Random - near 1:N

0
5

10
15
20
25
30
35
40
45
50

R
un

tim
e

(C
PU

 C
yc

le
s)

B
ill

io
ns

Configuration

Part Build Probe

(c) Gaussian - M:N

0
20
40
60
80

100
120
140
160

R
un

tim
e

(C
PU

 C
yc

le
s)

B
ill

io
ns

Configuration

Part Build Probe

(d) Zipf - M:N

Figure 7: Hash Join run time with Variable Build Skew on Shufled Datasets - Skylake - 8 threads

We generate the build table using non-skewed keys, and vary
the correlation with the probe table to either be exactly 1:N, Zipf
skewed, or Gaussian skewed. The results are shown in Figure 8, with
each dataset paired next to its shuled variant. The results continue
earlier trends of showing SCVV leading in ordered datasets, and
MH provided the fastest times for shuled datasets. The sequential
1:N dataset produces exactly N=16 keys in the probe table for every
key in the build table. The Zipf and Gaussian 1:N datasets pick the
number of matches out of their respective skewed distributions,
and are capped at 16 matches. As a result, they generate fewer total
probe keys. Prior works showed that non-partitioning hash joins
beneit from skew on the probe table compared to non-partitioning
hash join variants [5, 8]. We observe this in our results, but only
when the datasets are ordered.

We also explore datasets that are generated with a near M:K

relationship. In these datasets, the number of correlating matches
for each build key isK, which is a number randomly chosen between
1 andN. The random K number is chosen using a uniformly random

distribution. Using a nearM:K distribution results in a smaller probe
table, and thus relatively faster join speed over M:N. We omit the
charts for this category, as there are no noteworthy changes to the
relative performance of the hash join conigurations.

6.6 Efect of Dataset Shufling on Hash Tables

Every dataset has an ordered version and a shuled version which
is shuled using a uniformly random distribution. It is observed
throughout the results that all conigurations take a performance hit
going from an ordered dataset to a shuled dataset. This trend ap-
plies even when the build keys are randomly drawn from a skewed
distribution, and repeated in the probe tableN times. This occurs be-
cause repeated keys in the probe table would no longer be probed in
the order that they were generated. As a result, we are signiicantly
less likely to ind the data in the cache or TLB.

There is also a clear trend of MH performing better when the
data is shuled, and SCVV taking the lead when it is ordered. This
trend is of particular interest to us, as it presents an opportunity

On Improving Data Skew Resilience In Main-memory Hash Joins IDEAS 2018, June 18–20, 2018, Villa San Giovanni, Italy

0
2
4
6
8

10
12
14
16
18

R
un

tim
e

(C
PU

 C
yc

le
s)

B
ill

io
ns

Configuration

Part Build Probe

(a) Sequential - Ordered

0
10
20
30
40
50
60
70
80

R
un

tim
e

(C
PU

 C
yc

le
s)

B
ill

io
ns

Configuration

Part Build Probe

(b) Sequential - Shuled

0
1
2
3
4
5
6
7
8
9

10

R
un

tim
e

(C
PU

 C
yc

le
s)

B
ill

io
ns

Configuration

Part Build Probe

(c) Zipf - Ordered

0
2
4
6
8

10
12
14
16
18

R
un

tim
e

(C
PU

 C
yc

le
s)

B
ill

io
ns

Configuration

Part Build Probe

(d) Zipf - Shuled

0
1
2
3
4
5
6
7
8
9

10

R
un

tim
e

(C
PU

 C
yc

le
s)

B
ill

io
ns

Configuration

Part Build Probe

(e) Gaussian - Ordered

0
2
4
6
8

10
12
14
16
18
20

R
un

tim
e

(C
PU

 C
yc

le
s)

B
ill

io
ns

Configuration

Part Build Probe

(f) Gaussian - Shuled

Figure 8: Hash Join Runtime with Variable Probe Skew on

1:N Datasets - Skylake - 8 threads

for a query planner to choose a hash table based on whether or not
the data is shuled. In order to gain better insight this, we measure
the TLB and cache misses. In Figure 9(a) we compare runtimes and
in Figure 9(b), we show the corresponding d-TLB misses. When

0
1
2
3
4
5
6
7
8
9

10

Shuffled Ordered

R
un

tim
e

(C
PU

 C
yc

le
s)

B
ill

io
ns

Dataset

Build Probe

(a) Runtime

0

10

20

30

40

50

60

70

80

Shuffled Ordered

D
at

a-
TL

B
 M

is
se

s
M

ill
io

ns

Dataset

DTLB misses

(b) Data-TLB Misses

Figure 9: Performance impact of shufling onMH and SCVV

- Zipf 1:N dataset - Skylake - 8 threads

the dataset is ordered, the SCVV data structure is also accessed in
a sequential manner. As a result entries that are evicted from the
dTLB will not be accessed again during the course of the current
phase. Due to the fact that the size of the dataset far exceeds the
number of entries that the TLB can hold (64 4KB pages), the chance
of incurring a TLB miss for every lookup is greatly increased on a
shuled dataset.

SCVV greatly beneits from ordered data, as it uses a modulo
hash function, and the buckets are accessed in the same order as the
keys. This beneits lookup times due to increased memory locality
and fewer cache misses. When the keys are shuled, the threads
access the hash table is a random and unpredictable fashion. As
a result, SCVV sufers from increased TLB and cache misses, and
potentially more lock contention. Shanbhag et al. reported that
shuled data increased transaction abort rate as more cache lines
were shared among the threads. Their experimental results show
a big performance gap between sorted and shuled datasets [28],
which we also observe in our results.

MH provides more consistent results as is indicated by the fact
that the build times are relatively similar for shuled and ordered
datasets. As MH is based on Cuckoo hashing (which uses two
diferent hash functions), its access pattern is not sequential. MH
does not beneit from build table locality, but it guarantees that it
will ind a key in either one or two lookups.

6.7 CPU Architecture

Figure 10 depicts the total hash join runtimes we measured on three
diferent hardware platforms. On all three hardware platforms, we
run the experiments using identical source code and datasets. That
is, we do not ine tune the algorithm to any particular architecture.

Our results indicate similar trends among the diferent archi-
tectures. Although we observe some minor variations, the fastest
and slowest conigurations are consistent. Despite large diferences
in CPU cache size (shown in Table 1), non-partitioning hash joins
provide the fastest performance. A query planner with some knowl-
edge of the data would be able to choose the fastest join variant.

The Part-Radix coniguration performs relatively well on the
shuled dataset, but gradually loses ground going from Skylake
to Harpertown and then AMD. As noted in [5] Radix hash join

IDEAS 2018, June 18–20, 2018, Villa San Giovanni, Italy Puya Memarzia, Suprio Ray, and Virendra C Bhavsar

0

10

20

30

40

50

60

70

80

R
un

tim
e

(C
PU

 C
yc

le
s)

B
ill

io
ns

CPU Architecture

Nopart_MH
Nopart_SCVV
Part-Share_SCVV
Part-Indep_SCVV
Part-Radix_SCVV

(a) Sequential - Ordered

0

20

40

60

80

100

120

140

160

R
un

tim
e

(C
PU

 C
yc

le
s)

B
ill

io
ns

CPU Architecture

Nopart_MH
Nopart_SCVV
Part-Share_SCVV
Part-Indep_SCVV
Part-Radix_SCVV

(b) Sequential - Shuled

Figure 10: Total join time on variableCPUarchitectures - 1:N

Datasets - 8 threads

beneits from ine tuning the parameters to the hardware. This
trend demonstrates that without parameter tuning, Radix hash join
does not perform consistently.

Choosing thewrong join coniguration can even result inmodern
hardware performing worse compared to old hardware. In Figure
10(b), the Part-Indep coniguration performs similarly on Skylake
and Harpertown. As noted in Section 6.4.3, Part-Indep may create
an excessive number of private partitions. The combination of poor
load balancing and unordered data access results in a performance
penalty that is so severe, it undermines eight years of architectural
improvements.

Shuled datasets have the potential to thrash the cache and
TLB. These datasets have a greater performance impact on the
partitioned hash join variants. Non-partitioning hash joins provide
faster and more predictable performance, regardless of the CPU
architecture.

7 CONCLUSION

Hash joins are among the key techniques that enable eicient data
access. However, their performance can be hindered when data
is skewed and/or shuled. We explored this issue on a set of 16
datasets that we have developed. We highlighted the importance
of using a broad variety of synthetic datasets to mimic real-world
applications. To our knowledge, no previous work has generated
such a variety of datasets and analyzed their performance impact
on hash joins.

We proposed modiications to the separate chaining based hash
table (used in [8]) to deal with skewed data, and incorporated this
into the hash join implementations used in their benchmark. We
showed how the choice of hash table can improve performance
with skewed datasets by more than three orders of magnitude when
using our modiied hash table compared to the prior implemen-
tation. With extensive experiments, we presented a performance
evaluation of ive hash join conigurations.

In order to further improve performance, we introduced a novel
hash table called Maple hash table. We have elaborated on how our
hash table guarantees constant lookup cost, and described the many

mechanisms we use to improve its insertion performance. We have
shown that Maple hash table can further improve performance on
shuled datasets, and demonstrated speed-ups of up to 17.3×. Our
study reinforces the case for more research in the area of hash joins
on skewed or shuled datasets, and the need for improved query
optimizers that can choose a performant join coniguration based
on the data characteristics.

REFERENCES
[1] D. A. F. Alcantara. Eicient Hash Tables on the GPU. PhD thesis, University of

California, Davis, 2011.
[2] Y. Arbitman, M. Naor, and G. Segev. De-amortized cuckoo hashing: Provable

worst-case performance and experimental results. ICALP, pages 107ś118, 2009.
[3] C. Balkesen, G. Alonso, J. Teubner, and M. T. Özsu. Multi-core, main-memory

joins: Sort vs. hash revisited. VLDBJ, pages 85ś96, 2013.
[4] C. Balkesen, J. Teubner, G. Alonso, and M. T. Özsu. Main-memory hash joins on

multi-core cpus: Tuning to the underlying hardware. In ICDE, pages 362ś373.
IEEE, 2013.

[5] Ç. Balkesen, J. Teubner, G. Alonso, and M. T. Özsu. Main-memory hash joins on
modern processor architectures. TKDE, pages 1754ś1766, 2015.

[6] R. Barber, G. Lohman, I. Pandis, V. Raman, R. Sidle, G. Attaluri, N. Chainani,
S. Lightstone, and D. Sharpe. Memory-eicient hash joins. VLDBJ, pages 353ś
364, 2014.

[7] P. Beame, P. Koutris, and D. Suciu. Skew in parallel query processing. In PODS,
pages 212ś223. ACM, 2014.

[8] S. Blanas, Y. Li, and J. M. Patel. Design and evaluation of main memory hash join
algorithms for multi-core cpus. In SIGMOD, pages 37ś48. ACM, 2011.

[9] T. P. P. Council. Tpc-h benchmark speciication. Published at http://www.tcp.org/
hspec.html, pages 592ś603, 2008.

[10] A. Crolotte and A. Ghazal. Introducing Skew into the TPC-H Benchmark. In
TPCTC, pages 137ś145, 2012.

[11] B. Cutt and R. Lawrence. Improving join performance for skewed databases. In
CCECE, pages 387ś392. IEEE, 2008.

[12] B. Fan, D. G. Andersen, and M. Kaminsky. Memc3: Compact and concurrent
memcache with dumber caching and smarter hashing. In NSDI 13, pages 371ś384,
2013.

[13] P. Garcia and H. F. Korth. Database hash-join algorithms on multithreaded
computer architectures. In CF ’06, pages 241ś252. ACM, 2006.

[14] G. Graefe, R. Bunker, and S. Cooper. Hash joins and hash teams in microsoft sql
server. In VLDB, pages 86ś97, 1998.

[15] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J. Weinberger. Quickly
generating billion-record synthetic databases. In Sigmod, pages 243ś252. ACM,
1994.

[16] H. Guiroux, R. Lachaize, and V. Quéma. Multicore locks: The case is not closed
yet. In USENIX ATC, pages 649ś662, 2016.

[17] Q. Huang, H. Gudmundsdottir, Y. Vigfusson, D. A. Freedman, K. Birman, and
R. van Renesse. Characterizing load imbalance in real-world networked caches.
In HotNets, page 8. ACM, 2014.

[18] T. Kejser. TPC-H Schema and Indexes. http://kejser.org/
tpc-h-schema-and-indexes/, Jun 2014 (accessed June 16, 2017).

[19] A. Kemper and T. Neumann. Hyper: A hybrid oltp&olap main memory database
system based on virtual memory snapshots. In ICDE, pages 195ś206, 2011.

[20] C. Kim, T. Kaldewey, V. W. Lee, E. Sedlar, A. D. Nguyen, N. Satish, J. Chhugani,
A. Di Blas, and P. Dubey. Sort vs. hash revisited: fast join implementation on
modern multi-core cpus. VLDBJ, pages 1378ś1389, 2009.

[21] A. Kirsch, M. Mitzenmacher, and U. Wieder. More robust hashing: Cuckoo
hashing with a stash. In ESA, pages 611ś622, 2008.

[22] S. Kumar, J. Turner, and P. Crowley. Peacock hashing: Deterministic and updatable
hashing for high performance networking. In INFOCOM, pages 101ś105. IEEE,
2008.

[23] H. Lang, V. Leis, M. Albutiu, T. Neumann, and A. Kemper. Massively parallel
numa-aware hash joins. In IMDM, pages 3ś14, 2013.

[24] X. Li, D. G. Andersen, M. Kaminsky, and M. J. Freedman. Algorithmic improve-
ments for fast concurrent cuckoo hashing. In EuroSys, pages 27:1ś27:14. ACM,
2014.

[25] S. Manegold, P. Boncz, and M. Kersten. Optimizing main-memory join on modern
hardware. TKDE, pages 709ś730, 2002.

[26] R. Pagh and F. F. Rodler. Cuckoo hashing. In ESA, pages 121ś133. Springer, 2001.
[27] S. Richter, V. Alvarez, and J. Dittrich. A seven-dimensional analysis of hashing

methods and its implications on query processing. VLDBJ, pages 96ś107, 2015.
[28] A. Shanbhag, H. Pirk, and S. Madden. Locality-adaptive parallel hash joins using

hardware transactional memory. In IMDM, 2016.
[29] C. Silverstein. Google sparsehash. https://github.com/sparsehash/ sparsehash,

2005.

http://www.tcp.org/hspec. html
http://www.tcp.org/hspec. html
http://kejser.org/tpc-h-schema-and-indexes/
http://kejser.org/tpc-h-schema-and-indexes/
https://github.com/sparsehash/sparsehash

	Abstract
	1 Introduction
	2 Related Work
	2.1 Hash Joins
	2.2 Hash Join Configurations
	2.3 Hash Tables

	3 The Impact of Data Skew
	4 Separate Chaining with Value-Vectors (SCVV)
	4.1 Lookup and materialization costs
	4.2 Evaluation and Overhead

	5 Maple Hash Table (MH)
	5.1 Data Structures
	5.2 Hash Functions
	5.3 Concurrent Implementation
	5.4 Performance Evaluation

	6 Evaluation
	6.1 Platform Specifications
	6.2 Datasets
	6.3 Results and Discussion
	6.4 Build Table Skew
	6.5 Probe Table Skew
	6.6 Effect of Dataset Shuffling on Hash Tables
	6.7 CPU Architecture

	7 Conclusion
	References

