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Abstract—With the proliferation of mobile devices and ex-
plosive growth of spatio-temporal data, Location-Based Services
(LBS) have become an indispensable technology in our daily
lives. The key characteristics of the LBS applications include
a high rate of time-stamped location updates, and many concur-
rent historical, present and predictive queries. The commercial
providers of LBS must support all three kinds of queries and
address the high update rates. While they employ relational
databases for this purpose, traditional databases are unable to
cope with the growing demands of many LBS systems. Support
for spatio-temporal indexes within these databases are limited to
R-tree based approaches. Although a number of advanced spatio-
temporal indexes have been proposed by the research community,
only a few of them support historical queries. These indexing
techniques, with support for historical queries, are unable to
sustain high update and query throughput typical in LBS.

Technological trends involving increasingly large main mem-
ory and core footprints offer opportunities to address some
of these issues. We present several key ideas to support high
performance commercial LBS by exploiting in-memory database
techniques. Taking advantage of very large memory available in
modern machines, our system maintains the location data and in-
dex for the past N days in memory. Older data and index are kept
in disk. We propose an in-memory storage organization for high
insert performance. We also introduce a novel spatio-temporal
index that maintains partial temporal indexes in a versioned-
grid structure. The partial temporal indexes are organized as
compressed bitmaps. With extensive evaluation, we demonstrate
that our system supports high insert and query throughputs and
it outperforms the leading LBS system by a significant margin.

I. INTRODUCTION
The widespread adoption of GPS-enabled mobile devices

and sensors have catapulted Location Based Services (LBS)
to become a prominent technology. Geospatial Web services
such as Google Maps also played a role in popularizing LBS
applications. Started as an enabling technology for mobile
asset tracking, LBS is the driving force behind a range of
emerging applications such as location-based games and social
networks, location-aware search and personalized advertising
and weather services. The combination of factors, including
the proliferation of mobile devices and the rise of novel
applications, has led to the rapid growth of spatio-temporal
data. Besides the data volume, LBS workloads also exhibit
“velocity” of data. LBS applications are characterized by
a very high rate of location updates and many concurrent
location-oriented queries. These queries can be classified into
“historical” or “past” queries, “now” or “present” queries and
“predictive” or “future” queries. The commercial providers of
LBS must support all three kinds of queries and deal with the

high update rates. However, due to a rising customer base many
of them are unable to handle the demands with the existing
technology.

Commercial LBS offerings need to satisfy a diverse and
often conflicting set of features. The customers would like to
generate reports with different degrees of complexity. Some
of these reports are based on present queries, or predictive
range queries and others are long running historical reports
based on past queries. With a large customer base the query
workload in a given LBS system can be significant. At the
same time the service providers must store and efficiently index
location updates received at very high frequency. Šidlauskas
et al. [21] noted that this rate can easily surpass 1 million
or more location record updates per second. To address this
complex set of requirements commercial LBS providers rely
on relational databases to manage their data. To determine how
traditional databases perform with update-intensive spatio-
temporal workloads, we benchmarked [14] a database popular
with the LBS industry. The database engine supports an R-tree
based spatial index. We disabled the autocommit property and
configured the buffer pool size to 64 GB so that the database
completely fits in memory. The throughput achieved by the
database was about 45K inserts/second, which is arguably low
in this context. Our goal is to build database support for a
full-fledged commercial LBS system. To this end, we intend
to support millions of updates per second for one million
moving objects, along with thousands of concurrent historical,
present and predictive queries. This presents a few research
challenges, including insert-optimized database storage and
efficient spatio-temporal indexes.

The insert performance of traditional relational databases
falls short, even when the database fits completely in memory.
We argue that to meet the performance demands of Location-
Based Services, it is essential to exploit recent advances in
hardware and database technologies. Modern server-grade ma-
chines have large memory capacity, and some have hundreds of
GB, even a few TB of memory. Each machine comes equipped
with several tens or even hundreds of cores. Database technolo-
gies have evolved to take advantage of the abundant memory
and processor capacity and in-memory databases are an active
area of research. Several database vendors also have in-
memory offerings, such as SAP HANA [15] and VoltDB [19].
When it comes to main-memory database storage design,
there are a few options available as noted in Section II-A.
However, we argue that it is possible to achieve better insert
throughput than those from the in-memory row or columnar
storage techniques. The location record updates are insert-only
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operations. There is no need to delete records from random
locations in the table. A new record can always be inserted at
the end of a table. To insert a new record in the table a new
record id (RID) must be acquired, which is a unique identifier
for each record. This can be performed without acquiring a
lock, by incrementing the RID counter using an atomic CPU
instruction. Also, location records are stored without any data
compression, because typical compression techniques such as
dictionary encoding are not that beneficial for position data.
So, the associated cost of compressing records can be avoided.
Furthermore, unlike regular transactions, the location updates
do not need the strongest consistency guarantee. It may be
considered okay even if a few location updates are missed.

Due to its importance in LBS applications, indexing mov-
ing objects has been an active area of research. Although a
number of spatio-temporal indexes have been proposed [10],
most of them are based on B-tree or R-tree and hence they
suffer from the underlying limitations. These indexes are un-
able to sustain a very high rate of location data inserts/updates
and the majority of these proposals deal with answering only
present or predictive queries. Only a few of them can answer
historical, present and predictive queries. A recently reported
LBS system that supports historical and present queries is
MOIST [6]. MOIST achieves 8K+ and 60K updates per second
with one and 10 servers respectively for one million objects.
Realizing the potential of memory based approaches, recently a
parallel main-memory moving object indexing technique was
proposed [21]. They achieved good update performance by
exploiting efficient in-memory data structures. However, their
system was designed to support present queries only, as at
most 2 location records per object are maintained in memory.
Hence it is not suitable as a real-world LBS system. To offer
commercial LBS it is essential to maintain the history of each
object and have support for historical queries.

We propose several key ideas that take advantage of the
modern hardware resources. They are outlined below:

1) By taking advantage of large memory capacity we main-
tain the location table data and indexes for the past N
(configurable) days in memory. Older data and indexes
are maintained on disk. We also present an insert-efficient
main-memory storage that is particularly suitable for
LBS. Our storage model, column fragment, exploits insert
parallelism by creating “multiple insertion points” that
enable lockless insertion in each fragment.

2) We introduce a novel parallel in-memory spatio-temporal
index called PASTIS (PArallel Spatio-Temporal Indexing
System). PASTIS decomposes the spatial domain into
grid cells and for each grid cell partial temporal indexes
are maintained for moving objects that visited the cell.
This makes it possible for separate threads to process the
updates concurrently for different grid cells. The partial
indexes are constructed as compressed bitmaps. Bitmaps
offer memory efficiency and fast bitwise operations.

3) We present a fast bitmap compression technique. Al-
though PASTIS can use any advanced bitmap compres-
sion technique such as that presented by Wu et al. [23],
the features offered by our compressed bitmap such as
fast random update and logical bit operations, are quite
apt for our index.

With extensive evaluation studies we demonstrate that
our system achieves excellent update throughput (millions of

updates per second) and at the same time achieves very good
query execution throughput (thousands of queries per second).
For instance, our system achieves 3.2 million+ updates per sec-
ond with 1 million moving objects. The update throughput of
our system is significantly better than the reported throughput
of MOIST and the relational database that we benchmarked.

The rest of the paper is organized as follows. Related
works are mentioned in Section II. We describe the design
considerations in Section III and system organization in Sec-
tion IV. The details of main-memory storage for LBS and
our spatio-temporal index, PASTIS, are in Sections V and
VI respectively. Next we present our compressed bitmap in
Section VII and a discussion in Section VIII. We describe the
performance evaluation in Section IX and the conclusions are
in Section X.

II. RELATED WORK
A. Main-memory storage

With the advent of large main-memory machines, there
have been a number of projects addressing storage organization
for main-memory databases. Row-store databases are typically
utilized for update intensive workloads, whereas column-
oriented databases are exploited for analytical workloads. SQL
server’s OLTP engine Hekaton [2] is an example of row-
oriented main memory storage. IBM’s Blink [13] is also a row-
store main-memory database. MonetDB [16] is among the first
column-store databases and it materializes intermediate results
in main memory. To support updates with column-store usually
a separate write-efficient store is maintained, besides a read
storage. The main-memory column-store database C-store [16]
uses a read-optimized store (RS) and writable store (WS),
where all the inserts and updates are handled by WS. Data is
moved from WS to RS as batch inserts by a tuple-mover. C-
store maintains its data without any compression. SAP HANA
is a commercial in-memory column oriented database that has
a delta store for inserts and updates and a main store to support
analytical queries [15]. Records in delta store are periodically
merged into the main store. It uses dictionary encoding to
compress the data. However, the movement of data or the
merge process is a relatively time consuming operation. We
explore the design space of main-memory storage for LBS in
Section V and propose an insert-efficient main-memory storage
called column fragment.

B. Spatio-temporal Index
The topic of spatio-temporal indexing has been addressed

by a large body of research. These approaches can be classified
based on whether they support indexing historical, present,
predictive or combined past, present and future data. Nguyen-
Dinh et al. provide a comprehensive survey of recent develop-
ment in spatio-temporal access techniques [10]. The combined
spatio-temporal access methods that have been proposed can
be roughly classified into three categories: B-tree based, R-tree
based and grid based.

BBx-index [7] is a B-tree technique that extends Bx-tree [5].
Bx-tree converts the object locations into one dimensional
space filling curve (SFC) codes and uses a B-tree to index
these locations. BBx-index maintains a forest of Bx-trees, each
tree for a separate timestamp interval. Among the R-tree based
techniques, HR-tree [9] is one of the earliest. It generates a
new logical R-tree for each update, which leads to significant
space usage and poor performance. The STR-tree [12] uses an
R-tree to index moving object trajectories that are represented



as connected line segments. However, this approach performs
poorly when the trajectories are long, which would naturally
occur as time progresses. A subsequent work, MV3R-tree [17]
uses multiple versions of R-trees, in the same way BBx-index
does.

Since B-tree and R-tree are both external access methods,
they are not scalable when it comes to supporting very high
update rates. R-tree based approaches, in particular, perform
poorly with update-heavy workloads due to the need to main-
tain the target structure constantly. B-tree based access meth-
ods on the other hand perform worse than those of R-trees for
query-rich workloads, since R-trees can prune the search space
much more efficiently than B-trees. With workloads involving
millions of moving objects and thousands of simultaneous
queries, neither can sustain high throughput.

Due to the availability of large main-memory machines, a
few recent research projects focussed on in-memory indexing
techniques. The MOVIES approach [3] enables concurrent
queries and updates by letting the queries run on a read-
only copy of the index structures, but this requires frequent
rebuilding of short-lived data structures. Šidlauskas et al. [21]
avoid this “stop the world problem” by using fine-grained
concurrency control mechanisms. However, they only support
present queries (not historical queries or predictive queries),
whereas MOVIES only supports predictive queries.

MOIST [6] is a custom LBS system built over a key-value
store. It employs traffic shedding and history data archiving.
MD-HBase [11] is another LBS infrastructure that builds K-d
tree and Quad tree indexes over a range-partitioned key-value
store. It supports present range queries. Our indexing system
supports all three types of range queries and at the same time
offers better throughput than these approaches.

III. DESIGN CONSIDERATIONS
We outline several key ideas to achieve the goal of handling

high update rates and concurrently supporting past, present and
predictive queries for LBS. We expand on the ideas introduced
in Section I.

A. Main-memory storage for LBS
Many applications exhibit skew in the service requests for

objects. A news website, for instance, receives significantly
more page hits for breaking news than older news from the
previous week. Such skew patterns can also be observed with
the LBS workloads. More recent data from a vehicle fleet, for
instance, is accessed much more often than older data. Wu and
Madden [22] noted the significant request skew in LBS and
reported that more than 50% of all queries accessed data from
just the last day in their LBS system. Consequently, companies
providing LBS typically maintain the past 30 to 45 days of
data online in relational databases and older data is archived
using database archiving techniques. Although the volume of
location data even for 45 days is significant, it is feasible to
keep the entire online data and the corresponding index in
main memory. This is made possible by the availability of large
main-memory machines, having hundreds of GB and even a
few TBs. These observations led us to design our system as
an in-memory database. We maintain in memory the past N
days of data, and data older than that are kept on disk.

Besides the data volume, LBS workloads also exhibit high
“velocity” due to frequent location updates from each moving
object. Therefore, it is not enough to just provide in-memory
storage capacity, but the storage must support record insertion

at a high rate. To maintain history for each moving object
the location records need to be stored in a database table. We
assume that this Location table has the following schema:
{ObjectId,Latitude,Longitude,Direction,Speed,Datestamp}

We propose an insert-efficient in-memory storage for the
Location table. It is based on the idea of exploiting paral-
lelism while inserting new location records in the table. For
this, an in-memory column is partitioned into a number of
segments called column fragments. Each column fragment is
implemented as a dynamic array of primitive data types. The
different column fragments from a table belonging in the same
range of record identifiers are grouped as a table fragment. In
Section V, we provide further details of our storage structure.

B. A novel parallel in-memory index
To answer past, present and predictive queries a high

performance spatio-temporal index is necessary. The index
must support high update rates. Traditional relational databases
use R-tree based spatial index. These indexes inherit the
underlying limitations. For instance, to add a new record in the
index page level or R-tree node level locks must be acquired.
This limits the multi-threaded scalability of these approaches.

We propose a novel in-memory spatio-temporal index we
call PASTIS (PArallel Spatio-Temporal Indexing System). The
main idea behind PASTIS is to decompose the spatial domain
into grid cells and for each grid cell maintain partial temporal
indexes for moving objects that visited the cell. The partial
temporal indexes are constructed as compressed bitmaps. The
compression of bitmaps provides memory storage efficiency.
Bitmaps support fast random update operations. Moreover,
the fast bitwise logical operations enabled by bitmaps allow
us to attain good query performance. Our spatio-temporal
index exploits multi-core parallelism by letting separate threads
process the inserts/updates concurrently for different cells.

For an incoming location update u, a new record id RID is
obtained and then the fields of the update record are appended
into the corresponding column fragments. Updating the spatio-
temporal index involves first computing the current grid cell
id, then the corresponding temporal index data structures are
updated. Further details of PASTIS can be found in Section VI.

C. Fast bitmap compression
PASTIS relies on compressed bitmaps to construct the

partial temporal indexes. The performance of the underlying
bitmap implementation is crucial to its update throughput
and query performance. By taking advantage of hardware
parallelism in bitwise CPU instructions, bitmaps offer superior
alternative to other data structures such as hashtables or linked
lists for membership determination. Compression is necessary,
because bitmaps are not memory efficient. Since the compres-
sion and decompression can be compute intensive, techniques
that can operate on compressed bitmaps are preferred. The
Word Aligned Hybrid (WAH) compressed bitmap is an exam-
ple of such approaches. WAH uses run-length encoding for
compressing long sequences of 0’s and 1’s.

We introduce a bitmap compression algorithm that supports
speedier bitmap operations than those in WAH. Our approach
is based on the observation that instead of always using run-
length encoding, it might be more compute efficient to use a
bit array or id list for portions of the entire bitmap. In this, the
bit range is split into fixed sized chunks. Depending on the
density of each chunk a local decision is made as to which



compression technique is to be used. Detailed description of
our compressed bitmap is in Section VII.

IV. OVERALL SYSTEM ORGANIZATION
Figure 1 shows the overall system organization. Our system

is highly multi-threaded and takes advantage of the available
processing cores. It uses three different thread-pools: to per-
form inserts into the Location table, to conduct updates into the
index, and to execute queries. To reduce concurrency conflicts
we use multiple record and index inserter queues and multiple
query queues, such that each thread in a thread-pool manages
a separate queue. Since the density of moving objects per grid
cell changes continuously and is skewed, load-balancing is
essential. This is discussed in Section VI-C

V. INSERT-EFFICIENT MAIN-MEMORY STORAGE
To support high location update rates in LBS it is im-

perative that the underlying storage for the Location table be
optimized for record inserts. To achieve parallel performance
with concurrent insertions in the Location table, we use the
concept of “multiple insertion points”. In this organization,
each in-memory column is partitioned into a number of seg-
ments called column fragments. The entire record id (RID)
space is subdivided such that each column fragment operates
in a different RID space. The column fragments from different
columns that belong in the same range of record identifiers
constitute a table fragment. Each object is assigned to a table
fragment so that all RIDs corresponding to the location updates
for an object are monotonically incremental in its RID space.

Formally, let the entire RID space be {x|x = 1, 2, 3, ...N},
where N is the highest RID. Let there be y table fragments,
where y = 1, 2, 3, ..F . Then the RID space Ry of table
fragment y is the interval [R ∗ (y − 1) + 1, R ∗ y], where
R = N/F . Let there be M moving objects in the system. They
are grouped into sets of objects {Vi|i = 1, 2, 3, ..F}, where
each set Vi has V = M/F objects. A function f is used to
map each set Vi to a RID space Ry , where f : Vi → Ry . When
a new location update is received from a moving object viεVi,
it is always inserted at the end of its assigned table fragment.
For instance, if vi is mapped to Ry and ry is the last assigned
RID within Ry , a new RID is obtained by incrementing ry
by 1 before the new location update can be processed. A
separate thread is dedicated to handle the inserts for a different
table fragment, allowing concurrent updates into the same table
without lock conflicts. To increment RID in a lockless manner,
atomic instructions such as Compare-and-Swap or Fetch-and-
Add can be used.

Other main-memory columnar storage models, such as C-
store [16] or SAP HANA [15], maintain a separate writable
storage, which must be periodically merged to the read-
optimized store. This merge process can be expensive. In our
model we have a single storage for the Location table that is
used for both reads and writes. Since location data does not
benefit from compression, we store the data “as is” and avoid
the corresponding cost of compression using techniques such
as dictionary encoding. We also do not perform any sorting on
the columns of the Location table, unlike other column-stores.
The new records from a particular object are always inserted at
the end of the same table fragment, they are implicitly sorted
by the timestamp column.

To evaluate the record insert performance of column frag-
ment against row-store and column-store, we implemented
memory resident column-store and row-store storages. Our

column-store implementation resembles the L2-delta store of
SAP HANA [15]. Records are inserted into the Location
table as is, and no compression or sorting is performed.
Prior to inserting a record, a new insert position or RID is
acquired using the Fetch-and-Add atomic operation. We also
tested atomic Compare-and-Swap (CAS), but found Fetch-and-
Add to be faster. Our experiment involves inserting 1 billion
location records with different numbers of inserter threads (2,
4, 8 and 16). The details of the dataset are in Section IX-A.
To avoid any disk I/O, we preallocated enough memory to
completely accommodate the entire dataset. The completion
times of inserting 1 billion records with different numbers of
threads are shown in Figure 2. As can be seen, the column
fragment is 7X and 12X faster with two threads, and 34X
and 39X faster with 16 threads than row and column stores
respectively. This is due to the fact that with column fragments
there is no contention over the atomic operation of acquiring
a new RID. Also as each column fragment is managed by a
dedicated thread there are fewer cache misses compared to
the other two. We report the L2 cache misses observed during
the insert operations in Figure 3. Note that the completion
time with row store is better than that of the column store,
because of fewer cache misses. The experiment demonstrates
that column fragment is efficient for inserts. Row-store could
also benefit from such fragmentation.

We adopt column fragment for the Location table because
column-based storage is more efficient for analytical work-
loads. Currently, persistence of the Location table is provided
by memory-mapped files. Location updates do not require the
strongest consistency guarantee. Unlike transactional work-
loads, missing a few location records may be tolerated.

VI. PASTIS
In this Section we describe our spatio-temporal index,

shown in Figure 4. First we describe the internal data struc-
tures. Then, we describe the update and query algorithms.

A. Index structure
The index is organized as a versioned grid in which the

spatial domain is subdivided into regular sized grid cells.
For a highly skewed location dataset it is also possible to
structure the grid cells as quad-tree blocks, in which each
block is recursively split into four blocks until they meet
a criteria. PASTIS orders the grid cells using Z-order (also
known as Morton-order) space filling curve. Therefore any
location record can be positioned into a corresponding grid
cell with its Z-order code. Each grid cell maintains partial
temporal indexes for the objects that visited that cell. Whenever
a location update u is received, the corresponding grid cell
SGridi (where i=1 to I , with I the total number of cells) is
located and the partial temporal index structures are updated
for that record.

A partial temporal index consists of an interval lookup table
Itab with an entry for each time interval for the past N days.
In each entry there is a compressed bitmap CBmap identifying
the moving objects that were in the grid cell at the given time
interval, and a hashmap Hm-RIDList. The hashmap associates
each moving object with a list of record identifiers RIDList.
Each identifier is used to locate in the Location table the actual
records storing datestamp, latitude and longitude information
for the object while at the grid cell during the time interval.
The RIDList is implemented as a dynamic integer array. Time
intervals are of S seconds (configurable value) for the past
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configurable number of hours H. For data records older than H
hours, the compressed bitmap CBmap and the hashmap Hm-
RIDList are maintained for configurable intervals of time T
(where T = m ∗ S, for a configurable m). The bitmap is
constructed by bitwise ORing the S seconds interval bitmaps,
the hashmap by appending RID lists.

For a new update u with location (x,y), datestamp dst,
object id Objk and record id RIDl, let SGridi be the determined
grid cell and Itabi be the corresponding interval table. Here,
dst is the datestamp at time t; j=1 to J , J being total intervals;
k=1 to K, K being total objects and l=1 to L, L being the max
record id. If dst maps to an existing interval TSj in Itabi, then
the corresponding bitmap CBmapj and hashmap Hm-RIDListj
are updated. Otherwise a new interval TSj and related data
structures are instantiated. For object id Objk, the k-th bit of
the bitmap CBmapj is set. Furthermore, to make an entry for
the new record id RIDl, the object id Objk is used to locate
the RID list RIDListk within Hm-RIDListj . Finally, RIDl is
appended in the RID list of RIDListk.

While processing a query, the checking of the bitmap
CBmap to identify if an object was present during an interval is
a fast operation. On the other hand, inspecting the Hm-RIDList
is a relatively expensive operation; it involves a lookup in the
hashmap Hm-RIDList, then the retrieval of the corresponding
RID list RIDList and finally, obtaining the actual datestamps
etc, from the table. Moreover, if the temporal index interval
is small there will be fewer entries in the corresponding Hm-
RIDList and the lists of record identifiers. Hence accessing a
Hm-RIDList and corresponding RIDList pertaining to a smaller
interval is faster than that for a longer interval. If a query
interval completely overlaps a temporal index interval, there
is no need to inspect the Hm-RIDList. For a query interval
that partially overlaps an index interval, the Hm-RIDList is
checked. Smaller temporal index intervals are more likely
to be completely overlapped by a query interval. These are
the considerations behind maintaining partial temporal indexes
with finer granular interval S for more recent “hot” data and
maintaining partial indexes with coarser granular interval T
for “colder” data. Therefore, queries accessing the “hot” data
need to inspect smaller intervals and hence can be faster. Partial
index structures for data older than N days are kept in disk.

The partial index structures described above are used for
answering historical and present queries. To efficiently support
predictive queries (anticipated future locations) we keep a
hashmap PHm keyed by moving object id (Objk), the value
being a tuple (Lock) with the predicted latitude and longitude.
An array of hashmaps ArHm associates a compressed bitmap
PBmapi with each grid cell SGridi. The bitmap represents the
predicted object status within the grid for a future configurable
time interval F , where TF = Tnow + ∆t. The anticipated
future positions are interpolated using the model in [3]. For
a location update with current location (x,y), the predicted
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Ensure: The record was inserted into table and RId is record id
Require: LocTable is database table, TemporalIdx is temporal index

1: while RecordConcurrentQueue has more items do
2: {// First update predicted data structures}
3: LocnRecord ← RecordConcurrentQueue.pop()
4: OId ← LocnRecord.getObjId()
5: PredctdGCellId ← computePredctdGridCellId(LocnRecord)
6: PrevGCellId ← PredictivLookupDS.getPrevGCellId(OId)
7: if PrevGCellId != PredctdGCellId then
8: PredictivLookupDS.removeBitmapEntry(PrevGCellId,OId)
9: PredictivLookupDS.addBitmapEntry(PredctdGCellId,OId)

10: PredictivLookupDS.insertIntoPHm(OId,PredictedLatLon)
11: {// Next update past/present data structures}
12: CurrGCellId ← computeCurrGCellId(LocnRecord)
13: TemporalIdx ← SGridHashMap.find(CurrGCellId)
14: TemporalIdx.insertLocnRecord(LocnRecord)

Fig. 5. Algorithm Update

position is calculated as (x, y) + ~pv.TF , (where ~pv is the
projected velocity at time TF ) and entered in the hashmap
PHm. Another prediction function, such as in Panda [4], could
be used. If the anticipated grid cell id is different from current
grid cell id, the array of hashmaps is used to locate and update
the previously and currently predicted bitmaps.

B. Update processing
In Figure 5 we describe the update processing algorithm.

For an incoming location update u, a new record id RID is ob-
tained and then the fields of the update record LocnRecord are
appended into the corresponding column fragments. Updating
the index involves first updating the prediction data structures.
In line 5 the predicted grid cell id is computed. If the previous
grid cell entry for that object is different from the predicted,
then the object id is removed from the bitmap corresponding
to previously predicted grid cell and an entry is made into the
bitmap for predicted grid cell (lines 7 to 9). Also, the Lock
object is updated in the predictive hashmap PHm (line 10). The
data structure PredictivLookupDS encapsulates both PHm and
the array ArHm of hashmaps. Next, the data structures for the
past and present are updated. The current cell id is computed



Require: LocnRecord is the location record to insert
1: OId ← LocnRecord.getObjId()
2: Datestamp ← LocnRecord.getDatestamp()
3: RId ← LocnRecord.getRecordId()
4: RecInterval ← computeInterval(Datestamp)
5: CBmapHmRIDList ← this.Itab.find(RecInterval)
6: if CBmapHmRIDList = NULL then
7: this.RWLock.lock()
8: Create a new CBmapHmRIDList instance
9: CBmapHmRIDList.updateObject(OId,RId)

10: this.Itab.update(RecInterval,CBmapHmRIDList)
11: this.RWLock.unlock()
12: else
13: CBmapHmRIDList.updateObject(OId,RId)

Fig. 6. Procedure TemporalIdx.insertLocnRecord

Require: OId is the moving object id, RId is the record id
1: RIDList ← this.HmRIDList.find(OId)
2: this.RWLock.lock()
3: if RIDList = NULL then
4: Create a new RIDList instance
5: this.CBmap.add(OId)
6: RIDList.add(RId)
7: this.HmRIDList.insert(OId,RIDList)
8: this.RWLock.unlock()

Fig. 7. Procedure CBmapHmRIDList.updateObject

and the corresponding temporal index structures are updated
(line 14).

Figure 6 details the steps for updating the temporal index
structures with the info from LocnRecord. First, the temporal
interval is computed (line 4) and the corresponding bitmap
CBmap and Hm-RIDList structures (together encapsulated by
CBmapHmRIDList) updated (line 9 and 13). A lock is acquired
only when a new instance of CBmapHmRIDList (lines 6 to 11)
needs to be created. Updating the CBmapHmRIDList involves
locating the RID list entry RIDList in the hashmap HmRIDList
(Figure 7, line 1). Then a read-write lock is acquired, CBmap
is updated and the RID for the location record is inserted into
RIDList before releasing the lock (lines 2 to 8).

C. Load-balancing and skew handling
PASTIS is based on spatial partitioning of the spatial

domain into regular grid cells. The distribution of the mov-
ing objects (the number of objects per cell) can be highly
skewed and this distribution changes over time. Therefore,
load-balancing is important for location update performance,
especially with very high update rates. The goal of the load-
balancing approach is to minimize the variation in the number
of location records processed by the update processing threads.
This can be done in two ways: either assign the partitions
(cells) to threads using Range assignment or Round-robin
assignment. Figure 8 shows the Round-robin assignment algo-
rithm. Each index inserter thread manages a concurrent queue.
In the Assignment step the grid cells are assigned to index
inserter threads. A table inserter thread inserts a location record
in the table fragment and then inserts it into the index inserter
queue based on the cell the record belongs to and the cell to
thread mapping. An index inserter thread simply processes the
next record from its queue. A third load-balancing approach
(we call Adaptive; Figure 9) does not do any cell assignment.
Instead, a table inserter thread inserts a record into a randomly
chosen queue. Each index inserter thread iterates over the
queues and processes the next available record.

D. Query processing
In this Section we describe the past, present and predictive

(future) query processing algorithms. The algorithm for his-

Assignment:
1: Assign grid cells to index inserter threads in a round-robin

manner to produce the hashtable CellToThreadMappingHT
Table inserter thread:

2: ...
3: RecGridCellId ← computeCurrGridCellId(LocnRecord)
4: threadId ← CellToThreadMappingHT.find(RecGridCellId)
5: RecQueueArray[threadId].push(LocnRecord)

Index inserter thread:
6: Initialize LocalRecQueue ← RecQueueArray[localThreadId]
7: while true do
8: LocnRecord ← LocalRecQueue.pop()
9: Process LocnRecord and insert into index

Fig. 8. Algorithm Round-robin assignment

Table inserter thread:
1: ...
2: threadId ← RandomGenerator.nextRand()%NUM THREADS
3: RecQueueArray[threadId].push(LocnRecord)

Index inserter thread:
4: for qIdx ← 0 to RecQueueArray.size() - 1 do
5: LocnRecord ← RecQueueArray[qIdx].pop()
6: Process LocnRecord and insert into index

Fig. 9. Algorithm Adaptive

torical range query is shown in Figure 10. The grid cells that
are fully or partially covered by the query window QRect are
computed in lines 2 and 3. We proceed to describe the steps
for the partially covered cells. For each partially covered grid
cell the corresponding temporal index is used to obtain the
objects that were inside the cell during the interval (EndDS
- StartDS) using bitwise OR (lines 8 - 10 of Figure 10, and
Figure 11). This list of such objects is encoded in a partial
result bitmap tmpResltPartlyCovrd. For each such moving
object (i.e. for each bit that is set in tmpResltPartlyCovrd)
inside every partially covered grid cell, the corresponding
temporal index is utilized to inspect if that object was inside
the query window QRect (line 18 of Figure 10). The details of
this inspection is shown in Figures 12 and 13. This involves
retrieving the RIDList for that object (line 1 of Figure 13) and
for each RID entry, obtaining the corresponding location record
fields of latitude, longitude and datestamp from the location
table (lines 3 - 6). If the object location was inside the query
rectangle and the datestamp with the query interval (line 8),
the object is part of the past range query resultset.

The present range query algorithm utilizes the past range
query algorithm (Figure 10), by specifying the end datestamp
parameter to be “now” and start datestamp parameter to a few
seconds earlier (a configurable value offset).

The predictive range query algorithm uses two main data
structures: the prediction hashmap PHm and the array of
hashmaps ArHm (associating the each grid cell to a prediction
bitmap). The algorithm performs the following steps:
1. Compute the grid cells that are fully or partially covered by the

query window QRect
2. For each fully or partially covered cell the intermediate result

bitmap is obtained by performing a bitwise OR with the prediction
bitmap

3. Initialize final result bitmap with fully covered result bitmap
4. For each bit that is set in partially covered result bitmap do
5. Retrieve actual predicted latitude and longitude from PHm
6. If the predicted location is inside QRect
7. Set the bit representing the object in the final result bitmap

VII. COMPRESSED BITMAP
The main idea behind our insert-efficient compressed

bitmap is to split the bit range (each bit number identifying a
moving object) into fixed size chunks. How bits are represented



Require: Reslt is result-set bitmap, LocTable is database table,
STIdx is spatio-temporal index, QRect is query window, StartDS
and EndDS are query interval datestamps

1: {//Local variables: tmpResltFullyCovrd, tmpResltPartlyCovrd }
2: FullyCovrdCells ← getFullyCoveredCells(QRect)
3: PartlyCovrdCells ← getPartiallyCoveredCells(QRect)
4: for gridCell in FullyCovrdCells do
5: TemporalIdx ← STIdx.getTemporalIdxAt(gridCell.id)
6: TemporalIdx.getIntervalMatchingObjs(tmpResltFullyCovrd,

StartDS,EndDS)
7: Reslt ← BitwiseOr(Reslt, tmpResltFullyCovrd)
8: for gridCell in PartlyCovrdCells do
9: TemporalIdx ← STIdx.getTemporalIdxAt(gridCell.id)

10: TemporalIdx.getIntervalMatchingObjs(tmpResltPartlyCovrd,
StartDS,EndDS)

11: tmpResltPartlyCovrd.BitwiseMinus(tmpResltFullyCovrd)
12: NumBitsSet ← tmpResltPartlyCovrd.NumBitsSet()
13: BitmapSetIterator ← tmpResltPartlyCovrd.getIterator()
14: for gridCell in PartlyCovrdCells do
15: TemporalIdx ← STIdx.getTemporalIdxAt(gridCell.id)
16: BitmapSetIterator.ReSet()
17: for (nxtBit← BitmapSetIterator.GetnxtBitSet()) != NULL do
18: if Reslt.IsSet(nxtBit) != TRUE then
19: if (TemporalIdx.isObjInGrdCellAndIntrvl(nxtBit,

QRect,StartDS,EndDS,LocTable)) then
20: Reslt.SetBit(nxtBit)

Fig. 10. Algorithm PastRangeQuery

Require: tempReslt is temporary result-set bitmap, StartDS and
EndDS are query interval datestamps, LocTable is database table

1: IntervalsCovrd ← getCoveredIntervals(StartDS,EndDS)
2: for Interval in IntervalsCovrd do
3: CBmapHmRIDList ← this.Itab.find(Interval)
4: PartialRsltBitmap ← CBmapHmRIDList.getObjsBitmap()
5: this.ReadWriteLock.ReadLock()
6: tempReslt ← BitwiseOr(tempReslt, PartialRsltBitmap)
7: this.ReadWriteLock.UnLock()

Fig. 11. Procedure TemporalIdx.getIntervalMatchingObjs

Require: QRect, StartDS, EndDS, LocTable same as before
1: IntervalsCovrd ← getCoveredIntervals(StartDS,EndDS)
2: for Interval in IntervalsCovrd do
3: CBmapHmRIDList ← this.Itab.find(Interval)
4: IsInside ← CBmapHmRIDList.isObjInGrdCellAndIntrvl(

ObjId, QRect,StartDS,EndDS,LocTable)

Fig. 12. Procedure TemporalIdx.isObjInGrdCellAndIntrvl

in each chunk depends on the bit density within the chunk:
• Run-length encoding is used if a contiguous sequence of

bits is set, and there is only one contiguous sequence
within the chunk. We refer to these chunks as contseq
(for “contiguous sequence”) chunks.

• The chunk is represented as an array of bit numbers if less
than a configurable number of bits is set. Although objlist
(for object list) would be more appropriate, we refer to
these chunks as ridlist chunks.

• In any other case the chunk is represented as a bit vector.
We refer to these chunks as bitvect chunks.

A bitmap is a list of chunks with the following properties:
• The state of each bit cannot be determined by more than

one chunk (i.e., all chunks are disjoint).
• If a chunk Ci occurs before chunk Ck, then the first bit

number in Ci’s range is before the first bit in Ck’s range.
• Each chunk contains at least one bit set.
The requirement for a chunk to represent the state of a

fixed number of bits is relaxed in the case of contseq chunks.
Contseq chunks can determine the state for a larger range
of bits, but this range must be a multiple of the range size
for the other types of chunks. For each bitmap two fields are
kept, FirstChunk and LastChunk pointing to the first and last
chunks in the list of chunks. Each chunk has an encoding field,

Require: ObjId, QRect, StartDS, EndDS, LocTable same as before
1: RIDList ← this.HmRIDList.find(OId)
2: for r=0 to ObjId.size()-1 do
3: Rid ← RIDList[r]
4: Lat ← LocTable.getLatitude(Rid)
5: Lon ← LocTable.getLongitude(Rid)
6: Datestamp ← LocTable.getDatestamp(Rid)
7: ReturnVal ← FALSE
8: if Datestamp ≥ StartDS AND Datestamp ≤ EndDS AND

QRect.Contains(Lat, Lon) then
9: ReturnVal ← TRUE

10: return
Fig. 13. Proc CBmapHmRIDList.isObjInGrdCellAndIntrvl
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NextChunk:
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FirstRid: 1024

LastRid: 1032

RidList:

Offset: 2048

LastRid: 2061

BitVect:

Offset: 1024

FirstRid: 2049

Offset: 0

FirstRid: 1

LastRid: 1023

NextChunk:

PrevChunk: PrevChunk:

LastChunk:

FirstChunk:

Encoding: contseq Encoding: ridlist Encoding: bitvect

NextChunk:

Fig. 14. Bitmap Implementation

specifying the type of chunk, and an offset field implemented
as a 64 bit unsigned integer. Two fields FirstRid and LastRid
determine the first and last bits on in each chunk. An example
of our bitmap is shown in Figure 14.

A. Bitmap transformations
As entries are added or removed from bitmaps it may be

beneficial to change how bits are specified in one or multiple
chunks, if the new chunk representation uses less memory
than the previous representation. Two chunk transformation op-
erations, namely TransformOnAdd and TransformOnRemove,
evaluate and possibly transform the representation of a chunk.

TransformOnAdd is invoked when new entries are being
added. The goal is to identify whether the bitvect or ridlist
can be changed to a contseq representation, which requires less
memory than both. The steps of TransformOnAdd as follows:
1. If chunk-type is ridlist or bitvect
2. If number-of-entries-in-chunk = (LastRid - FirstRid + 1)
3. Reset chunk’s encoding to contseq

TransformOnRemove operation is invoked when unset-
ting bits for bitvect chunks and the goal is to change the
representation to a ridlist if the number of bits set in the
bitvect is less than the capacity of a ridlist. The steps of
TransformOnRemove algorithm are shown below:
1. If chunk-type is bitvect
2. If number-of-entries-in-chunk ≤ capacity-of-ridlist
3. Reset chunk’s encoding to ridlist

When a chunk becomes a contseq chunk a check is
performed to see if we can coalesce it either with the previous
or next chunk. Coalescing occurs only for contseq chunks and
it involves replacing two chunks with a single chunk.

VIII. DISCUSSION
PASTIS is essentially a versioned grid organization that

maintains for each time interval the partial trajectory of each
moving object. PASTIS utilizes insert-efficient compressed
bitmap and dynamic integer array (RID list) to maintain the



TABLE I. TRACE FILE DETAILS

Dataset Num. of Num. of Size
name mobile objects location records on disk
10 million 10,000 10,000,000 445 MB
100 million 100,000 100,000,000 4.5 GB
1 billion 1,000,000 1,000,000,000 46 GB

partial trajectory. It could be argued that this can also be
implemented with an in-memory R-tree based approach. To
evaluate the performance of such an approach we replaced
the CBmap and Hm-RIDList structures with an efficient in-
memory R*-tree. An in-memory R*-tree is used to track the
partial trajectory of all the moving objects during a time
interval for each grid cell. A location update is processed by the
R*-tree as a combination of deletion, updating the trajectory
MBR and re-insertion operations.

A location update involves inserting a new record in the
table and updating the index. Figure 15 shows the breakdown
of the completion time to perform 10 million location updates
and contrasts PASTIS implemented with compressed bitmap
and RID list vs. in-memory R*-tree. The data was obtained by
Callgrind profiler. The R*-tree approach takes 10X more time.
Also, whereas the Update Temporal index step takes 60.4%
of overall time with the bitmap approach, it takes 96% of the
overall time with the R-tree approach. Note that Insert into
table step takes only a small fraction of overall time due to
column fragment storage.

Since concurrency is a key performance bottleneck, our
system exploits several high performance concurrency control
features. The shared counter variables were implemented with
atomic Fetch-and-Add. Efforts were made to avoid the usage
of locks. However, in a few cases where it was unavoidable
we used high performance spin locks. It was shown that [21]
spin locks provided the best performance compared to other
options, especially when the locked objects are held for rela-
tively short period of time. We used two concurrent collection
classes: concurrent hashmap and concurrent blocking queue
from the Intel TBB library.

IX. PERFORMANCE STUDIES
A. Experimental Setup

The performance studies were conducted on a HP Z820
machine with 256 GB of RAM and 2 Intel Xeon E5-2670
processors having a total of 16 cores (32 h/w threads), each
running at 1200 MHz. The OS was Suse Linux SLES 11.1.

The polyline shapefiles of Texas from the TIGER
dataset [18] were fed into the mobility trace generator
MOTO [8] to generate the traces. We modified MOTO to
generate multiple trace files, each file for a different table
fragment. Mobility traces were generated for each object for
1000 timestamps (equivalent to 10,000 seconds). We generated
the trace files for 3 different data sizes, as shown in Table I.
Table II shows various configuration parameter settings.

B. Update Performance
We first evaluate the location update performance (insertion

into the Location table and updating the index). In our experi-
mental setup we utilized 10 dedicated threads to handle inserts
into the Location table for 10 different column fragments.

1) Load-balancing algorithms: To determine the impact
of the load-balancing approaches on location update perfor-
mance we implemented the algorithms mentioned in Sec-

TABLE II. PARAMETER SETTINGS

Parameter Settings
Space domain Texas, 1251 km x 1183 km
Num. of road segments 56832846
Time duration, timestamps 1000
Update frequency, seconds 10
Updates (num. of records) 10 million, 100 million, 1 billion
Range query area, km2 1 , 4, 16
Range query interval, % 1.5, 3, 6, 12

tion VI-C, namely, Range assignment, Round-robin assignment
and Adaptive. The throughput achieved by them with 1 billion
location updates is shown in Figure 16. The Adaptive algo-
rithm consistently achieved better throughput than the other
two approaches as the number of index inserter threads are
varied. To determine the reason for this, we plot the standard
deviation of the number of records processed by the threads
in Figure 17. The standard deviation was the least for the
Adaptive algorithm. It is expected that as the number of threads
are increased the variation among them is reduced. This can
be clearly observed for Range assignment. With Round-robin,
this variation was lower than that of Range assignment, but still
higher than Adaptive. Note that Adaptive achieved over 3.2
million updates per second and this throughput became steady
after 16 to 20 threads. Part of the reason is that 10 additional
threads are dedicated as table inserters. We use Adaptive as
the load-balancing algorithm in all subsequent experiments.

2) Number of spatial partitions (grid resolution): To ob-
serve the effect of the number of partitions on location update
performance, we vary the number of partitions (grid cells).
Figure 18 shows the throughput achieved with the 3 datasets
as the number of partitions are increased from 256 to 4096.
The number of index inserter threads were fixed at 20. As
can be seen, the throughput remains steady regardless of the
number of partitions for all three datasets. This suggests that
the Adaptive algorithm does a good job of load-balancing and
grid resolution has no significant impact on update throughput.
For the remaining experiments we use 1024 partitions.

3) Temporal index interval length: An index interval length
is the duration of time interval for which all location records
in a particular grid cell are recorded in the corresponding
temporal index. The smaller the index interval length, the
more temporal index instances are created. Intuitively, it would
require more computation to process more temporal index
instances. To evaluate the throughput at different index interval
lengths, we vary the length to 2, 4, 6, 8 and 10 minutes. Fig-
ure 19 shows the corresponding throughputs. The throughput
is increased as the interval length is increased, for instance, it
is 3.5 million updates per second for dataset - 1 billion with
interval length 4. This is a good trend, because in a real-world
LBS application this interval length S for the records received
within the last H (where, H = 24 hours) would be higher than
2 minutes, such as 10 to 30 minutes. For records older than 24
hours, this length T could be much higher, such as a few hours.
Unless otherwise specified, we use 2 minute as the default.

4) Storage requirements: The storage requirement is a key
consideration when its comes to adopting an index solution.
To this end, we report the total size of all bitmaps created by
our index by varying the temporal index interval lengths, to 2,
4, 6, 8 and 10 minutes. As shown in Figure 20, the total size of
all the bitmaps is quite small, and is dependent on the temporal
index interval length. As noted previously, in a real-world LBS
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Fig. 16. Update throughput with different load-
balancing approaches
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Fig. 17. Standard dev. of number of records pro-
cessed with different load-balancing approaches
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Fig. 18. Update throughput with different
number of partitions
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Fig. 19. Update throughput with different
temporal index interval length
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Fig. 20. Total size of all bitmaps with different
temporal index interval length
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Fig. 21. Query throughput
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applications the temporal index interval length would be much
larger, and hence the storage requirements would be lower.
C. Query Performance

In this Section we evaluate concurrent range query perfor-
mance. All queries were executed simultaneously with record
updates. The query execution is started after at least 5% of
the dataset is populated. Four types of range queries were
evaluated: past (historical), present, predictive (future), and
mixed. The mixed queries were generated by issuing past,
present and predictive queries at equal ratio 1:1:1. Since LBS
applications are dominated by updates, rather than queries, we
assign the available threads in 2:1 ratio to update processing
as opposed to query processing. We used update to query ratio
1000:1, so that one query was issued for every 1000 updates.
No significant decrease in update throughput was observed.

Figure 21 shows the throughputs of past, present, predictive
and mixed queries. For all three datasets, the system achieved
throughputs of thousands of queries per second. The average
query response times are shown in Figure 22. As expected,
past query response times are the longest. However, even with
the dataset - 1 billion, the past query response time was less
than a millisecond. For present, predictive and mixed queries
the response times were lower than those of past queries.
This shows that in-memory bitmaps can help accelerate query
performance.

1) Spatial extent: A key parameter, when generating
queries, is the spatial extent or the spatial dimension of the
query window. We used three spatial extent values: 1 sq. km,
4 sq. km and 16 sq. km [21]. The Figure 23 compares the
throughput of past and present queries for the 3 different spatial
dimension sizes. For both the queries the query throughput
is the lowest when the spatial extent is 16 sq. km. This

is expected because when the dimension is larger, there are
more moving objects and correspondingly, more records to be
processed. Interestingly, the throughput is slightly lower at 1
sq. km than at 4 sq. km. To explain this, note that if a grid
cell is partially overlapped by the query window it is more
expensive to process than if it is fully covered. A cell is more
likely to be partially covered at 1 sq. km than at 4 sq. km.

2) Interval length: The temporal length of the queries,
expressed as a fraction of the recorded history [17], is an
important parameter for the past queries. We used 4 query
interval length values to evaluate the performance of the past
queries: 1.5%, 3%, 6% and 12%. The Figure 24 compares the
throughput of past range queries for the 4 different interval
lengths and datasets 100 million and 1 billion. In all cases, the
throughput is the best at interval length 1.5%. The throughput
is decreased as the interval length is increased.

D. Comparison with other indexes and other LBS systems
Spade [1] is a popular benchmark that compares a number

of spatio-temporal indexes. We evaluate two representative
spatio-temporal indexes, Bx-tree and TPR-tree [20], from
Spade using a setup described in Section IX-A. Like other
in-memory databases, such as SAP HANA, in our system the
Location table is persisted, and the index is built when the
table is loaded into memory. To do a fair comparison, we
modified the Spade benchmark code to make the Bx-tree and
TPR-tree indexes memory resident and not persist into disk.
Figure 25 compares their update and query throughputs of Bx-
tree and TPR-tree against PASTIS for the 10 million record
dataset. For both update and query, our approach shows orders
of magnitude better throughput than Bx-tree and TPR-tree.

A paper on LBS system MOIST reported [6] that it attained
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Fig. 26. WAH vs our compressed bitmap

8000+ updates per second and 60K updates per second with
1 server and 10 servers respectively for one million moving
objects. Although a direct comparison is not possible, we
demonstrated in Figure 18 that with a single server we achieve
over 3.2 million updates per second for one million objects.
This is a speedup of 400X over MOIST for a single server.
MD-HBase [11] reported a peak throughput of 220K location
updates per second (in a 16-node cluster), which is one order of
magnitude lower than ours. They noted their best present range
query average response time to be about 500 milliseconds. Our
past and present range query response times are less than a
millisecond for all 3 datasets. Most commercial LBS providers
use traditional relational databases for data management. As
reported in [14], a popular database achieves only about 45K
updates per second even when it fits in memory.

E. Compressed bitmap performance
To compare the performance of our compressed bitmap

against the state-of-the-art WAH compression, we create 1000
compressed bitmaps, each representing a partial temporal index
with 1 million moving objects. We randomly set the bits of
the bitmaps with 3 different sparsity: 10%, 1% and 0.1%. The
sparsity determines how many bits are set, for instance, with
10% sparsity 1 out of every 10 bits are set randomly. We report
the completion time to set the bits of all 1000 bitmaps for a
particular sparsity. Since fast bitwise OR operation is important
for query performance we also report the completion time to
perform logical OR operation with the 1000 bitmaps. Figure 26
shows that our compressed bitmap is faster than WAH with
both set bit and bitwise OR operations for all sparsity levels.

X. CONCLUSIONS
Location-Based Services have come to play important roles

in various facets of our lives. With the exponential growth
of spatio-temporal data, many commercial LBS systems are
unable to meet the growing customer demands. It is necessary
that the databases, on which LBS providers depend, offer
sufficient performance to handle very high update rates, while
supporting many concurrent past, present and future queries.

To address these requirements, we propose a combination
of in-memory based techniques. We present an insert-efficient
main-memory storage for LBS. We introduce PASTIS, a par-
allel in-memory spatio-temporal index that supports historical
(past), present and predictive (future) queries. PASTIS is a
versioned grid organization that utilizes compressed bitmaps to
maintain partial temporal indexes for objects that visited each
grid cell in a 2D spatial domain. By completely maintaining
the data and index for the past active N days in memory, our
system avoids any disk access latency for updates and queries.
Thread-level parallelism and fine-grained concurrency control,
supported by fast bitmap operations help our system to achieve
high update and query performance. With extensive evaluations

we demonstrate the superior performance of our system over
existing approaches.
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