UNB/ CS/ David Bremner/ papers

Selected Publications (plus my Ph.D. thesis)

   [1] D. Bremner, M. D. Sikirić, and A. Schürmann. Polyhedral representation conversion up to symmetries. January 2007. http://www.arxiv.org/abs/math.MG/0702239.

   [2] D. Bremner, D. Chen, J. Iacono, S. Langerman, and P. Morin. Output-sensitive algorithms for Tukey depth and related problems. September 2006. http://www.cs.unb.ca/~bremner/research/papers/bcilm-_osatd-_06.pdf.

   [3] D. Bremner, T. M. Chan, E. D. Demaine, J. Erickson, F. Hurtado, J. Iacono, S. Langerman, and P. Taslakian. Necklaces, convolutions, and X + Y . Proceedings of the European Symposium on Algorithms, pages 160–171, September 2006. http://www.cs.unb.ca/~bremner/research/papers/bcdehilst-_ncxy-_06.pdf.

   [4] D. Bremner, J. Bokowski, and G. Gevay. Symmetric matroid polytopes and their generation. May 2006. http://www.cs.unb.ca/~bremner/research/papers/bbg-_smptg-_06.pdf.

   [5] D. Bremner, K. Fukuda, and V. Rosta. Primal dual algorithms for data depth. Data Depth: Robust Multivariate Analysis, Computational Geometry, and Applications, AMS DIMACS Book Series, 72:171–194, January 2006. http://www.cs.unb.ca/~bremner/research/papers/bfr-_pdadd-_04.ps.gz.

   [6] O. Aichholzer, D. Bremner, E. D. Demaine, F. Hurtado, E. Kranakis, H. Krasser, S. Ramaswami, S. Sethia, and J. Urritia. Games on triangulations. Theoretical Computer Science, 343(1-2):42–71, June 2005. http://dx.doi.org/10.1016/j.tcs.2005.05.007.

   [7] D. Bremner, E. D. Demaine, J. Erickson, J. Iacono, S. Langerman, P. Morin, and G. T. Toussaint. Output sensitive algorithms for computing nearest-neighbour decision boundaries. Discrete and Computational Geometry, 33(4):593–604, 2005. http://www.cs.unb.ca/~bremner/research/papers/bdeilmt-_osacn-_03b.ps.gz.

   [8] D. Bremner and D. Gay. Experimental lower bounds for three simplex chirality measures in low dimensions. Proceedings of the 16th  Canadian Conference on Computational Geometry, August 2004. http://www.cccg.ca/proceedings/2004/37.pdf.

   [9] D. Bremner, F. Hurtado, S. Ramaswami, and V. Sacristán. Small strictly convex quadrangulations of point sets. Algorithmica, 38(2):317–339, November 2003. Special issue of papers from ISAAC 2001. http://www.arxiv.org/abs/cs.CG/0202011.

   [10] D. Bremner and A. Golynski. Sufficiently fat convex polyhedra are not 2-castable. Proceedings of the 15th  Canadian Conference on Computational Geometry, August 2003. http://www.arxiv.org/abs/cs.CG/0203025.

   [11] O. Aichholzer, D. Bremner, E. D. Demaine, H. Meijer, V. Sacristán, and M. Soss. Long proteins with unique optimal foldings in the H-P model. Computational Geometry: Theory and Applications, 25(1–2):139–159, May 2003. http://www.arXiv.org/abs/cs.CG/0201018.

   [12] D. Bremner and T. C. Shermer. Point visibility graphs and O-convex cover. International Journal of Computational Geometry and Applications, 10(1):55–71, February 2000. http://www.cs.unb.ca/~bremner/research/papers/bs-_pvgoc-_00.ps.gz.

   [13] D. Bremner and V. Klee. Inner diagonals of convex polytopes. Journal of Combinatorial Theory A, 87(1):175–197, July 1999. http://www.cs.unb.ca/~bremner/research/papers/bk-_idcp-_99.ps.gz.

   [14] D. Bremner. Incremental convex hull algorithms are not output sensitive. Discrete and Computational Geometry, 21(1):57–68, January 1999. http://www.cs.unb.ca/~bremner/research/papers/b-_ichan-_98.ps.gz.

   [15] D. Bremner, K. Fukuda, and A. Marzetta. Primal–dual methods for vertex and facet enumeration. Discrete and Computational Geometry, 20(3):333–357, October 1998. http://www.cs.unb.ca/~bremner/research/papers/bfm-_pdmvf-_98.ps.gz.

   [16] M. de Berg, P. K. Bose, D. Bremner, S. Ramaswami, and G. Wilfong. Computing constrained minimum-width annuli of point sets. Computer-Aided Design, 30(4):267–275, April 1998. http://dx.doi.org/10.1016/S0010-_4485(97)00073-_0.

   [17] P. K. Bose, D. Bremner, and M. van Kreveld. Determining the castability of simple polyhedra. Algorithmica, 19(1–2):84–113, September 1997. http://www.cs.unb.ca/~bremner/research/papers/bbk-_dcsp-_97.ps.gz.

   [18] D. Avis, D. Bremner, and R. Seidel. How good are convex hull algorithms? Computational Geometry: Theory and Applications, 7(5–6):265–301, April 1997. http://www.cs.unb.ca/~bremner/research/papers/abs-_hgach-_97.ps.gz.

   [19] D. Bremner. On the complexity of vertex and facet enumeration for convex polytopes. School of Computer Science, McGill University. 1997. http://www.cs.unb.ca/~bremner/research/papers/phd.

   [20] P. K. Bose, D. Bremner, and G. T. Toussaint. All convex polyhedra can be clamped with parallel jaw grippers. Computational Geometry: Theory and Applications, 6(5):291–302, September 1996. http://www.cs.unb.ca/~bremner/research/papers/bbt-_acpcb-_96.ps.gz.